非极性ZnO基薄膜制备及Na掺杂和ZnMgO/ZnO多量子阱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锌(ZnO)是Ⅱ-Ⅵ族宽禁带的直接带隙化合物半导体材料,禁带宽度为3.37eV,激子束缚能60meV,是制备发光二极管和半导体激光器的一种有潜力的材料。由于ZnO通常沿着c轴方向生长,具有很强的自发极化和压电极化效应,在这个方向制备的量子阱有很强的内建电场,导致制备出的光电器件发光效率较低,发光峰红移。通过沿着垂直与c轴方向也就是非极性方向生长薄膜可以消除内建电场的影响。因此,我们开展非极性薄膜的生长、合金化和多量子阱研究,并采用IA族元素Na作为p型掺杂剂,开展了Na掺杂的非极性ZnO研究,为实现ZnO基光电器件应用探索出一条新的道路。本论文的研究工作主要包括以下内容:
     1.利用脉冲激光沉积技术在m面蓝宝石衬底上外延m面ZnO薄膜,系统的研究了生长温度、沉积压强对薄膜的影响。结果表明得到的ZnO薄膜都是沿着非极性m面方向生长的,不含有极性和半极性成分,在较高的温度和较低的压强下制备的薄膜晶体质量比较好。在r面蓝宝石上外延出a面ZnO薄膜,薄膜的摇摆曲线半高宽仅有0.47°,表面粗糙度1.7nm,比m面ZnO薄膜有更好的晶体质量。
     2.采用PLD方法在r面蓝宝石上制备了Na掺杂的非极性a面ZnO薄膜,实现了非极性a面ZnO薄膜的p型转变。研究了Na含量、生长温度和沉积压强对电学性能的影响。得到的p型薄膜最佳的电学性能为:电阻率102Ωcm,空穴迁移率1.41cm2/Ⅴ、s,载流子浓度5.19×1016cm-3。制备出a面取向的ZnO同质p-n结,I-V特性曲线有一定的整流效应,验证了薄膜的p型导电行为。
     3.制备出较好晶体质量的非极性ZnMgO和非极性ZnCdO薄膜,实现了非极性ZnO薄膜的带隙调节。研究了生长温度和压强对非极性ZnMgO薄膜的晶体质量和性能的影响。在550℃,1Pa下制备的非极性ZnMgO薄膜具有最好的晶体质量,摇摆曲线半高宽为0.53℃,AFM测试得到的表面粗糙度仅为1.54nm。Hall测试得到薄膜的电阻率为1.51Ωcm,载流子迁移率7.74cm2/Vs,载流子浓度1.88×1018cm-3,呈n型导电。通过改变沉积压强,我们可以引入13%的Cd而不出现分相,但此时是以极性取向占主导,可以引入7.2%的Cd而薄膜仍然保持单一的a面非极性取向,实现禁带宽度从3.30到3.01eV内变化。
     4.在r面蓝宝石上制备了一系列不同阱宽的10周期ZnMgO/ZnO多量子阱,阱宽从2.2到5.6nm范围内变化。XRD测试表明量子阱沿着a面(1120)方向生长,具有单一的非极性择优取向。截面TEM测试表明量子阱有很好的周期性以及陡峭的界面。观察到了不同阱宽量子阱在低温和室温下的量子限域效应。研究了量子阱中的激子局域化效应、激子束缚能和温度淬灭效应。在c面蓝宝石上我们采用相同的方法制备了一系列与a面多量子阱相同阱宽的c面多量子阱,发现在我们所设计的阱宽范围内,非极性多量子阱没有出现发光峰的红移,极性多量子阱在阱宽大于5nm后出现了明显的红移现象,也即量子限域斯塔克效应,同时非极性多量子阱比极性多量子阱有更高的电子-空穴限制效率,这对光电器件的应用有非常重要的意义。
Zinc Oxide (ZnO), as a novel II-VI compound semiconductor with direct band gap of3.37eV and large excition binding energy of60meV, has been considered one of the most promising materials for short wavelength optoeletronic devices such as light-emitting diodes (LEDs) and laser diodes (LDs). However, with polar c-axis as the natural growth direction, ZnO suffers build-in electric fields along [0001] direction due to strong spontaneous and piezoelectric polarization, which will cause a decrease in the internal quantum efficiency of LEDs. The way to remove the build-in electric fields is to grow ZnO film along the direction perpendicular to the c-axis, called "non-polar" ZnO film. In this work, we performed systematic study of growth and properties of non-poplar ZnO films, alloys and multiple quantum wells (MQWs). We investigate the growth and characterization of Na-doped non-poplar ZnO films in attempt to obtain p-type non-poplar ZnO films. The main work included:
     1. Non-polar m-plane ZnO films were deposited on m-plane sapphire substrates by pulsed laser deposition. The effects of growth temperature and oxygen pressure on the structural, electrical and optical properties were systematic studied. All films we prepared were grown along m-plane direction without any polar and semipolar components. We also prepared a-plane ZnO films on r-plane sapphire substrates. The full width at half maximum (FWHM) and surface roughness results were0.47℃and1.7mm respectively, indicating better crysatal quality than the m-plane ZnO film grown on m-plane sapphire substrate.
     2. Non-polar Na-doped ZnO films were deposited on r-plane sapphire substrates by pulsed laser deposition, and the p-type conduction non-polar ZnO films were obtained. The effects of growth temperature and oxygen pressure and Na doping concentration on the electrical properties of the films were systematic investigated. The minimum resistivity was102Ωcm, with hole mobililty of1.41cm2/Vs and hole concentration of5.19x1016cm-3, We prepared ZnO-based p-n homojunction grown along a-plane direction. The obvious rectify effect of the p-n homojunction detected by I-V curve confirms the p-type conductivity of the Na-doped non-polar a-plane ZnO film.
     3. The band gap modulation of non-polar ZnO film was achieved by preparing high quality non-polar ZnMgO and ZnCdO films. The effects of growth temperature and oxygen pressure on the structural and properties of the non-polar ZnMgO films were investigated. The minimum FWHM of0.53°and surface roughness of1.54nm for the non-polar ZnMgO films was obtained at550℃and1Pa, corresponding to the resistivity was1.51Ωcm, with electron mobililty of7.74cm2/Vs and carrier concentration of1.88x1018cm-3. By changing the oxygen pressure, the maximum Cd content of13%in the non-polar ZnCdO film can be achieved without any second phases and the band gap can be modulated from3.01to3.30eV. The film absorbed13%Cd will mainly grow along [0001] direction. By introducing7.2%Cd, the film was unique non-polar a-plane direction.
     4. A series of10-period ZnO/ZnMgO multiple quantum wells (MQWs) with well widths varying from2.2to5.6nm have been grown on r-plane sapphire substrates by pulsed laser deposition. XRD reveal the MQWs grow along a-plane (1120) direction. A good periodic structure with clear interfaces was observed by transmission electron microscopy (TEM). The systematic blueshift for the emission energy in the MQWs behavior was observed at room and low temperature. The polar ZnO/ZnMgO MQWs fabricated on c-plane sapphire substrates with the same well width were also discussed. Low temperature photoluminescence (PL) is investigated to reveal that the non-polar MQWs exhibit confinement but no indication of quantum confined Stark (QCS) effect when well width is larger than5nm, contrary to what is observed in polar MQWs, and the non-polar MQWs have higher injection effect.
引文
[1]C. H. Bates, W. B. White, R. Roy. New High-Pressure Polymorph of Zinc Oxide. Science, 1962,137(3534):99.
    [2]O. Dulub, L. A. Boatner, U. Diebold. STM study of the geometric and electronic structure of ZnO (0001)-Zn, (0001)-O, (1010), and (1120) surfaces. Surface Science,2002,519(3): 201-217.
    [3]A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, L Suemune, Y.-W. Ok, T.-Y. Seong. Growth and characterization of hypothetical zinc-blende ZnO films on GaAs (001) substrates with ZnS buffer layers. Applied Physics Letters,2000,76(5):550.
    [4]S.-K. Kim, S.-Y. Jeong,C.-R. Cho. Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2Si substrate by annealing. Applied Physics Letters,2003,82(4):562-564.
    [5]S. M. Bobade. A reconstruction of cubic rs-ZnO on MgO (200) substrate through (100) plane of w-ZnO:rs-ZnO for transparent electronic application. Applied Physics Letters,2012,100(7): 072102.
    [6]J. E. Jaffe, J. A. Snyder, Z. Lin, A. C. Hess. LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO. Physical Review B,2000,62(3):1660-1665.
    [7]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc. A comprehensive review of ZnO materials and devices. Journal of Applied Physics, 2005,98(4):041301-1-103.
    [8]Bloom S, Ortenburger I. Pseudopotential band structure of ZnO. Physica Status Solidi B,1973, 58:561-566.
    [9]J. R. Chelikowsky. An oxygen pseudopotential:Application to the electronic structure of ZnO. Solid State Communication,1977,22:351-354.
    [10]A. Kobayashi, O. F. Sankey, S. M. Volz. Semiempirical tight-binding band structures of wurtzite semiconductors:AIN, CdS, Cdse, ZnS, and ZnO. Physical Review B,1983,28: 935-945.
    [11]A. Kobayashi, O. F. Sankey, D. J. Dow. Deep energy levels of defects in the wurtzite semiconductors AIN, CdS, Cdse, ZnS, and ZnO. Physical Review B,1983,28:946-956.
    [12]R. Laskowski, N. Christensen. Ab initio calculation of excitons in ZnO. Physical Review B, 2006,73(4):045201.
    [13]B. K. Meyer, H. Alves,D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. StraBburg, M. Dworzak, U. Haboeck, A. V. Rodina. Bound exciton and donor-acceptor pair recombinations in ZnO. physica status solidi (b),2004,241(2):231-260.
    [14]D. C. Look. Recent advances in ZnO materials and devices. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2001,80(1-3); 383-387.
    [15]S. Pearton, Recent progress in processing and properties of ZnO. Progress in Materials Science,2005,50(3):293-340.
    [16]R. Triboulet, J. Perriere. Epitaxial growth of ZnO films. Progress in Crystal Growth and Characterization of Materials,2003,47(2-3):65-138.
    [17]V. Kumar, B. S, R. Sastry. Thermal expansion coefficient of binary semiconductors, rystal Research and Technology,2001,36(6):565-569.
    [18]D. R. Lide, editor, CRC Handbook of Chemistry and Physics; 2004-2005.
    [19]C. Klingshirn. ZnO:Material, Physics and applications. Chemical Physics chemistry,2007, 8(6):782-803.
    [20]D. G. Thomas. The Exciton Spectrum of Zinc Oxide. Journal of Physics and Chemistry of Solids,1960,15(1-2):86-96.
    [21]E. Tomzig, R. Helbig. Band-edge Emission in ZnO. Journal of Luminescence,1976, 14(5-6):403-415.
    [22]J. J. Hopfield. Fine Structure in the Optical Absorption Edge of Anisotropic Crystals. Journal of Physics and Chemistry of Solids,1960,15(1-2):97-107.
    [23]D. C. Reynolds, C. W. Litton, T. C. Collins. Zeeman Effects in the Edge Emission and Absorption of ZnO. Physical Review,1965,140(5A):A1726-A1734.
    [24]D. C. Reynolds, T. C. Collins. Excited Terminal States of a Bound Exciton-Donor Complex in ZnO. Physical Review,1969,185(3):1099-1103.
    [25]Y. W. Heo, D. P. Norton, S. J. Pearton. Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy. Journal of Applied Physics,2005,98(7):073502.
    [26]J. B. Baxter, F. Wu, E. S. Aydil. Growth mechanism and characterization of zinc oxide hexagonal columns. Applied Physics Letters,2003,83(18):3797-3799.
    [27]D. C. Look, C. Coskun, B. Claflin,G C. Farlow. Electrical and optical properties of defects and impurities in ZnO. Physica B:Condensed Matter,2003,340-342:32-38.
    [28]D. M. Bagnall, Y. F. Chen, M. Y. Shen,Z. Zhu, T. Goto, T. Yao. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE. Journal of Crystal Growth,1998,184(1-2):605-609.
    [29]R. E. Service. Materials science-Will UV lasers beat the blues? Science,1997,276(5314): 895-895.
    [30]Z. K. Tang, G. K. L. Wong, P. Yu, ML Kawasaki. A. Ohtomo, H. Koinuma, Y. Segawa. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Applied Physics Letters,1998,72(25); 3270-3272.
    [31]D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, T. Goto. Optically Pumped Lasing of ZnO at Room Temperature. Applied Physics Letters,1997, 70(17):2230-2232.
    [32]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind. E. Weber, R, Russo, P. Yang. Room-temperature ultraviolet nanowire nanolasers. Science,2001,292(5523): 1897-1899.127
    [33]H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. Mckinney, J. Pham, R. Saykally, P. D. Yang. ZnO nanoribbon microcavity lasers. Advanced Materials,2003,15(22):1907-1911.
    [34]A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z. K. Tang, G. K. L. Wong, Y. Matsumoto, H. Koinuma. Room-temperature stimulated emission of excilons in ZnO/(Mg,Zn)O superlattices. Applied Physics Letters,2000,77(14):2204-2206.
    [35]H. D. Sun, T. Makino, N. T. Tuan, Y. Segawa, Z. K. Tang,G. K. L. Wong, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma. Stimulated emission induced by exciton-exciton scattering in ZnO/ZnMgO multiquantum wells up to room temperature. Applied Physics Letters,2000, 77(26):4250-4252.
    [36]Y. Segawa, H, D. Sun, T. Makino, M. Kawasaki, H. Koinuma. Exciton related stimulated emission in ZnO-based multiple-quantum wells. Physica Status Solidi a-Applied Research, 2002,192(1):14-20.
    [37]D. M. Bagnall, Y. F, Chen, M. Y. Shen, Z. Zhu, T. Goto, T. Yao. Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE. Journal of Crystal Growth,1998,184-185(1):605-609.
    [38]D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, Y. Tzeng. Lasing in whispering gallery mode in ZnO nanonails. Journal of Applied Physics,2006,99(9):093112.
    [39]H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, T. P. Chen, A. P. Abiyasa, C. Y. Ng. High-Temperature Lasing Characteristics of ZnO Epilaycrs. Advanced Materials,2006,18(6): 771-774.
    [40]J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, K. F. Brennan. High field electron transport properties of bulk ZnO. Journal of Applied Physics,1999,86(12): 6864-6867
    [41]D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, W. C. Harsch. Electrical properties of bulk ZnO. Solid State Communications,1998,105(6): 399-401.
    [42]J. Nause, B. Nemeth. Pressurized melt growth of ZnO boules. Semiconductor Science and Technology,2005,20(4):S45-S48.
    [43]K. Maeda, M. Sato, I. Niikura, T. Fukuda. Growth of 2 inch ZnO bulk single crystal by the hydrothermal method. Semiconductor Science and Technology,2005,20(4):S49-S54.
    [44]E. M. Kaidashev, M. Lorenz, H. Von Wenckstem, A. Rahm, H. C. Semmelhack, K. H. Han, G Benndorf, C. Bundesmann, H. Hochmuth, M. Grundmann. High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition. Applied Physics Letters,2003,82(22):3901-3903.
    [45]H. Kato, M. Sano, K. Miyamoto, T. Yao. Effect of O/Zn Flux Ratio on Crystalline Quality of ZnO Films Grown by Plasma-Assisted Molecular Beam Epitaxy. Japanese Journal of Applied Physics,2003,42(4B):2241-2244.
    [46]K. Iwata, P. Fons, S. Niki, A. Yamada,K. Matsubara, K. Nakahara, H. Takasu. Improvement of electrical properties in ZnO thin films grown by radical source(RS)-MBE. Physica Status Solidi a-Applied Research,2000,180(1):287-292.
    [47]K. Miyamoto, M. Sano, H. Kato, T. Yao. High-electron-mobility ZnO epilayers grown by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth,2004,265(1-2):34-40.
    [48]M. W. Cho, A. Setiawan, H. J. Ko, S. K. Hong, T. Yao. ZnO epitaxial layers grown on c-sapphire substrate with MgO buffer by plasma-assisted molecular beam epitaxy (P-MBE). Semiconductor Science and Technology,2005,20(4):S13-S21.
    [49]A. Ohtomo, A. Tsukazaki. Pulsed laser deposition of thin films and superlattices based on ZnO. Semiconductor Science and Technology,2005,20(4):S1-S12.
    [50]S. Zhang, S. H. Wei, A. Zunger. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Physical Review B,2001,63(7):075205.
    [51]F. Oba, S. R. Nishitani, S. Isotani, H. Adachi. Tanaka. Energetics of native defects in ZnO. Journal of Applied Physics,2001,90(2):824-828.
    [52]A. F. Kohan, G Ceder, D. Morgan, C. G Van De Walle. First-principles study of native point defects in ZnO. Physical Review B,2000,61(22):15019-15027.
    [53]A. Janotti, C. G Van De Walle. New insights into the role of native point dcfects in ZnO. Journal of Crystal Growth,2006,287(1):58-65.
    [54]L. E. Halliburton, N. C. Giles,N. Y. Garces, M. Luo, C. Xu, L. Bai, L. A. Boatner. Production of native donors in ZnO by annealing at high temperature in Zn vapor. Applied Physics Letters,2005,87(17):172108.
    [55]D. C. Look, J. W. Hemsky, J. R. Sizelove. Residual native shallow donor in ZnO, Physical Review Letters,1999,82(12):2552-2555
    [56]A. Janotti, C. G Van de Walle. Native point defects in ZnO, Physical Review B 2007,76(16): 165202.
    [57]J. I. Pankove, N. M. Johnson. Hydrogen in Semiconductors [M]. Boston; Academic Press, 1991.
    [58]C. G Van de Walle. Hydrogen as a cause of doping in zinc oxide. Physical Review Letters, 2000,85(5):1012-1015.
    [59]C. G Van de Walle. Defect analysis and engineering in ZnO. Physica B:Condensed Matt, 2001,308/310:899-903.
    [60]S. F. J. Cox, E. A. Davis, S. P. Cottrell, P. J. C. King, J. S. Lord, J. M. Gil, H. V. Alberto, R. C. Vilao, J. P. Duarte, N. A. De Campos, A. Weidinger, R. L. Lichti, S. J. C. Irvine. Experimental Confirmation of the Predicted Shallow Donor Hydrogen State in Zinc Oxide. Physical Review Letters,2001,86(12):2601-2604.
    [61]D. M. Hofmann, A. Hofstaetter, F. Leiter, H. J. Zhou, F. Henccker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, P. G Baranov. Hydrogen:A Relevant Shallow Donor in Zinc Oxide. Physical Review Letters,2002,88(4):045504.
    [62]G A. Shi, M. Stavola, S. J. Pearton, M. Thieme, E. V. Lavrov, J. Weber. Hydrogen local modes and shallow donors in ZnO. Physical Review B,2005,72(19):195211-1-8.
    [63]G A. Shi, M. Stavola, W. B. Fowler. Identification of an OH-Li center in ZnO:Infrared absorption spectroscopy and density functional theory. Physical Review B,2006,73(8): 081201(R)-1.
    [64]D. C. Reynolds, C. W. Litton, T. C. Collins, J. E. Hoelscher, J. Nause. Observation of donor-acceptor pair spectra in the photoluminescence of H-and Zn-implanted ZnO single crystals. Applied Physics Letters,2006,88(14):141919-1.
    [65]Y. Marfaing. Phenomenological analysis of codoping role of statistical fluctuations. Physica Status Solidi B-Basic Research,2002,229(1):229-238.
    [66]K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga,A. Shimizu. Growth of p-type zinc oxide films by chemical vapor deposition. Japanese Journal of Applied Physics Part 2-Letters, 1997,36(11A):L1453-L1455
    [67]F. Reuss. Optical investigations on the annealing behavior of gallium-and nitrogen-implanted ZnO. Journal of Applied Physics,2004,95(7):3385-3390.
    [68]B. K. Meyer, J. Sann, D. M. Hofmann, C. Neumann, A. Zeuner. Shallow donors and acceptors in ZnO. Semiconductor Science and Technology,2005,20(4):S62-S66.
    [69]Z. Z. Ye, J. G Lu, H, R Chen, Y. Z. Zhang, L. Wang, B. H. Zhao, J. Y Huang. Preparation and characteristics of p-type ZnO films by DC reactive magnetron sputtering. Journal of Crystal Growth,2003,253(1-4):258-264.
    [70]C. C. Lin, S. Y. Chen, S. Y. Cheng, H.-Y. Lee. Properties of nitrogen-implanted p-type ZnO films grown on SisN4Si by radio-frequency magnetron sputtering. Applied Physics Letters, 2004,84(24):5040-5042.
    [71]J. Lu. P-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations. Materials Letters,2003,57(22-23):3311-3314.
    [72]S. V. Ivanov, A. El-Shafr, M. Al-Suleiman, A. Bakin, A. Waag,0. G Lyublinskaya, N. M. Shmidt, S. B. Listoshin, R. N. Kyutt, V. V. Ratnikov, A. Y. Terentyev, B. Y. Ber, T. A. Komissarova, L. I. Ryabova,D. R. KJiokhlov. Studies of N-Doped p-ZnO Layers Grown on c-sapphire by Radical Source Molecular Beam Epitaxy. Journal of the Korean Physical Society,2008,53(5):3016-3020.
    [73]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nature Materials,2005,4(1):42-46.
    [74]S. Limpijumnong, X. Li, S.-H. Wei, S. B. Zhang. Substitutional diatomic molecules NO, NC, CO, N2 and O2:Their vibrational frequencies and effects on p doping of ZnO. Applied Physics Letters,2005,86(21):211910.
    [75]C. L. Perkins, S.-H. Lee, X. Li, S. E. Asher, T. J. Courts. Identification of nitrogen chemical states in N-doped ZnO via X-ray photoelectron spectroscopy. Journal of Applied Physics, 2005,97(3):034907.
    [76]T. Yamamoto, H. Katayama-Yoshida. Solution using a codoping method to unipolarity for the fabrication of p-type ZnO. Japanese Journal of Applied Physics Part 2-Letters,1999, 38(2B):L166-L169.
    [77]L. G Wang, A. Zunger. Dilute nonisovalent (II-VI)-(III-V) semiconductor alloys: Monodoping, codoping, and cluster doping in ZnSe-GaAs. Physical Review B,2003,68(12): 125211.
    [78]J. G Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, L. P. Zhu. P-type conduction in N-Al co-doped ZnO thin films. Applied Physics Letters,2004,85(15):3134-3135.
    [79]G D. Yuan, Z. Z. Ye, L. P. Zhu, Q. Qian, B. H. Zhao, R. X. Fan, C. L. Perkins, S. B. Zhang. Control of conduction type in Al-and N-codoped ZnO films. Applied Physics Letters,2005, 86(20):202106.
    [80]A. Tsukazaki, H. Saito, K. Tamura, M. Ohtani, H. Koinuma, M. Sumiya,S. Fuke, T. Fukumura, M. Kawasaki. Systematic examination of carrier polarity in composition spread ZnO thin films codoped with Ga and N. Applied Physics Letters,2002,81(2):235-237.
    [81]M. Sumiya, A. Tsukazaki, S. Fuke, A. Ohtomo, H. Koinuma, M. Kawasaki. SIMS analysis of ZnO films co-doped with N and Ga by temperature gradient pulsed laser deposition. Applied Surface Science,2004,223(1-3):206-209.
    [82]L. L. Chen, J. G Lu, Z. Z. Ye, Y. M. Lin, B. H. Zhao, Y. M. Ye, J. S. Li, L. P. Zhu. P-type behavior in In-N codoped ZnO thin films. Applied Physics Letters,2005,87(25):252106.
    [83]L. L. Chen, Z. Z. Ye, J. G Lu, P. K. Chu. Control and improvement of p-type conductivity in indium and nitrogen codoped ZnO films. Applied Physics Letters,2006,89(25):252113.
    [84]W. Z. Xu, Z. Z. Ye, T. Zhou, B. H. Zhao, L, P. Zhu, J. Y. Huang. Low-pressure MOCVD growth of p-type ZnO thin films by using NO as the dopant source. Journal of Crystal Growth,2004,265(1-2):133-136.
    [85]W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He, S. B. Zhang. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters,2006,88(17).
    [86]S. H. Lim, J. W. Kim, H. S. Kang, G H. Kim, H. W. Chang, S. Y. Lee. Characterizations of phosphorus doped ZnO multi-layer thin films to control carrier concentration. Superlattices and Microstructures,2005,38(4-6):377-384.
    [87]C. C. Lin, S. Y. Chen, S. Y. Cheng. Physical characteristics and photoluminescence properties of phosphorous-implanted ZnO thin films. Applied Surface Science,2004,238(1-4): 405-409.
    [88]Y. W. Heo, Y W. Kwon, Y. Li, S. J. Pearton, D. P. Norton. Properties of phosphorus-doped (Zn,Mg)O thin films and device structures. Journal of Electronic Materials,2005,34(4): 409-415.
    [89]F. Chen, Z. Ye, W. Xiu, B. Zhao, L. Zhu, J. Lv. Fabrication of p-type ZnO thin films via MOCVD method by using phosphorus as dopant source. Journal of Crystal Growth,2005, 281(2-4):458-462.
    [90]V. Vaithianathan, B.-T. Lee, S. S. Kim. Pulsed-laser-deposited p-type ZnO films with phosphorus doping. Journal of Applied Physics,2005,98(4):043519.
    [91]D.-K. Hwang, H.-S. Kim, J.-H. Lim, J.-Y. Oh, J.-H. Yang, S.-J. Park, K.-K. Kim, D. C. Look, Y. S. Park. Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering. Applied Physics Letters,2005,86(15): 151917.
    [92]S.-H. Kang, D.-K. Hwang, S.-J. Park. Low-resistance and highly transparent Ni/indium-tin oxide ohmic contacts to phosphorous-doped p-type ZnO. Applied Physics Letters,2005, 86(21):211902.
    [93]D. C. Look, G. M. Renlund, R. H. Burgener, J. R. Sizeiove. As-doped p-type ZnO produced by an evaporation/sputtering process. Applied Physics Letters,2004,85(22):5269-5271
    [94]V. Vaithianathan, B.-T. Lee, S. S. Kim. Preparation of As-doped p-type ZnO films using a Zn3As2/ZnO target with pulsed laser deposition. Applied Physics Letters,2005,86(6): 062101.
    [95]U. Wahl, E. Rita, J. Correia, A. Marques, E. Alves, J. Soares. Direct evidence for As as a Zn-Site Impurity in ZnO. Physical Review Letters,2005,95(21):215503.
    [96]T. S. Jeong, M. S. Han, J. H. Kim, C. J. Youn, Y. R. Ryu, H. W. White. Crystallinity-damage recovery and optical property of As-implanted ZnO crystals by post-implantation annealing. Journal of Crystal Growth,2005,275(3-4):541-547.
    [97]S. J. So, C. B. Park. Diffusion of phosphorus and arsenic using ampoule-tube method on undoped ZnO thin films and electrical and optical properties of p-type ZnO thin films. Journal of Crystal Growth,2005,285(4):606-612.
    [98]T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, Y. Hatanaka. P-type ZnO layer formation by excimer laser doping. Physica Status Solidi B-Basic Research,2002, 229(2):911-914.
    [99]F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao,J. L. Liu, W. P. Beyermann. High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy. Applied Physics Letters,2005,87(15): 152101.
    [100]F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu. Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy. Applied Physics Letters,2005, 87(25):252102.
    [101]Y. R. Ryu, S. Zhu, J. D. Budai, H. R. Chandrasekhar, P. F. Miceli, H. W. White. Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition. Journal of Applied Physics,2000,88(1):201-204.
    [102]Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White. Synthesis of p-type ZnO films. Journal of Crystal Growth,2000,216(1-4):330-334.
    [103]Y. R. Ryu, W. J. Kim, H. W. White. Fabrication of homostructural ZnO p-n junctions. Journal of Crystal Growth,2000,219(4):419-422.
    [104]Y. R. Ryu, T. S. Lee, J. H. Leem, H. W. White. Fabrication of homostructural ZnO p-n junctions and ohmic contacts to arsenic-doped p-type ZnO. Applied Physics Letters,2003, 83(19):4032-4034.
    [105]Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim, Y. S. Park, C. J. Youn. Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes, Applied Physics Letters,2006,88(24):241108.
    [106]S. Limpijumnong, S. Zhang, S. H. Wei, C. Park. Doping by Large-Size-Mismatched Impurities:The Microscopic Origin of Arsenic-or Antimony-Doped p-Type Zinc Oxide. Physical Review Letters,2004,92(15):155504.
    [107]W. J. Lee, J. Kang, K. J. Chang. Electronic structure of phosphorus dopants in ZnO. Physica B:Condensed Matter,2006,376-377:699-702.
    [108]U. Wahl, E. Rita, J. Correia, A. Marques, E. Alves, J. Soares. Direct evidence for Sb as a Zn site impurity in ZnO. Applied Physics Letters,2009,94(26):261901.
    [109]C. H. Park, S. B. Zhang, S. H. Wei. Origin of p-type doping difficulty in ZnO:The impurity perspective. Physical Review B,2002,66(7):073202.
    [110]M. G Wardle, J. P. Goss, P. R. Briddon. Theory of Li in ZnO:A limitation for Li-based p-type doping. Physical Review B,2005,71(15):155205.
    [111]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. L. Chen, D. Y. Li, L. P. Zhu, B. H. Zhao, Y. L. Hu. Realization of p-type ZnO films via monodoping of Li acceptor. Journal of Crystal Growth, 2005,283(1-2):180-184.
    [112]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G Lu, L. P. Zhu, B. H. Zhao. Dopant source choice for formation of p-type ZnO:Li acceptor. Applied Physics Letters,2006,88(6): 062107-1-3.
    [113]Y. J. Zeng, Z. Z. Ye, J. G. Lu, W. Z. Xu, L. P. Zhu, B. H. Zhao, S. Limpijumnong. Identification of acceptor states in Li-doped p-type ZnO thin films. Applied Physics Letters, 2006,89(4):042106.
    [114]J. G. Lu, Y. Z. Zhang, Z. Z. Ye, Y. J. Zeng, H. P. He, L. P. Zhu, J. Y. Huang, L. Wang, J. Yuan, B. H. Zhao, X. H. Li. Control of p-and n-type conductivities in Li-doped ZnO thin films. Applied Physics Letters,2006,89(11):112113
    [115]Y. Z. Zhang, H. P. He, Z. Z. Ye, H. H. Huang, J. G. Lu, M, Qiu, B. H. Zhao, L. P. Zhu, J. Y. Huang. Preparation and photoluminescence properties of p-type Li-doped ZnMgO thin films. Materials Letters,2008,62(8-9):1418-1420.
    [116]L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, B. H. Zhao. Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source. Journal of Electronic Materials,2007,36(4):498-501.
    [117]S. S. Lin, J. G Lu, Z. Z. Ye, H. P. He, X. Q. Gu, L. X. Chen, J. Y. Huang, B. H. Zhao, p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes. Solid State Communications,2008,148(1-2):25-28.
    [118]S. S. Lin, Z. Z. Ye, J. G. Lu, H. P. He, L. X. Chen, X. Q. Gu, J. Y. Huang, L P. Zhu, B-H. Zhao. Na doping concentration tuned conductivity of ZnO films via pulsed laser deposition and electroluminescence from ZnO homojunction on silicon substrate. Journal of Physics D: Applied Physics,2008,41(15):155114.
    [119]Z. Ye, S. Lin, H. He, X. Gu, L. Chen, J. Lii,J, Huang, L. Zhu, L. Wang, Y. Zhang, X. Li,叶志镇,林时胜,何海平,顾修全,陈凌翔,吕建国,黄靖云,朱丽萍,汪雷,张银珠,李先杭Room Temperature Blue-UV Electroluminescence from ZnO Light-Emitting Diodes Involving Na-Doped p-Type ZnO and ZnO/ZnMgO Multi-Quantum Wells. Chinese Journal of Semiconductors,2008,29(8):1433-1435.
    [120]Y. Yan, M. M. Al-Jassim, S.-H. Wei. Doping of ZnO by group-IB elements. Applied Physics Letters,2006,89(18):181912.
    [121]H. S. Kang, B. D. Ahn, J. H. Kim, G H. Kim, S. H. Lim, H. W. Chang, S. Y. Lee. Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant. Applied Physics Letters,2006,88(20):202108.
    [122]L. Duan, W. Gao, R. Chen, Z. Fu. Influence of post-annealing conditions on properties of ZnO:Ag films. Solid State Communications,2008,145(9-10):479-481.
    [123]K.-S. Ahn, T. Deutsch, Y. Yan, C.-S. Jiang, C. L. Perkins, J. Turner, M. Al-Jassim. Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation. Journal of Applied Physics, 2007,102(2):023517.
    [124]A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, Y. Scgawa. Structure and optical properties of ZnO/Mgo2Zn0.8 superlatlices. Applied Physics Letters,1999,75(7): 980-982.
    [125]T. Makino, C. H. Chia, N. T. Tuan, H. D. Sun, Y. Scgawa, M. Kawasaki, A. Ohtomo, K. Tamura, H. Koinuma. Room-temperature luminescence of excilons in ZnO/(Mg,Zn)O multiple quantum wells on lattice-matched substrates. Applied Physics Letters,2000,77(7): 975-977.
    [126]X, Q. Gu, L. P. Zhu, Z. Z. Ye,H. P. He, Y. Z. Zhang, F. Huang, M. X. Qiu, Y. J. Zeng,F. Liu, W. Jaeger. Room-temperature photoluminescence from ZnO/ZnMgO multiple quantum wells grown on Si(111) substrates. Applied Physics Letters,2007,91(2):022103.
    [127]H. P. He, Y. Z. Zhang, Z. Z. Ye, H. H. Huang, X. Q. Gu, L. P. Zhu, B. H. Zhao. Photoluminescence properties of ZnO/Zn0.9Mgo0.1O multi-quantum wells with different well widths. Journal of Physics D-Applicd Physics,2007,40(17):5039-5043.
    [128]J. Jiang, L. Zhu, Y. Li, Y. Guo, W. Zhou, L. Cao, H. He, Z. Ye. Band gap modulation of ZnCdO alloy thin films with different Cd contents grown by pulsed laser deposition. Journal of Alloys and Compounds,2013,547:59.
    [129]B. K. Meyer, A. Polity, B. Farangis, Y. He, D. Hasselkamp, T. KraMer, C. Wang. Structural properties and bandgap bowing of ZnO1-xSx thin films deposited by reactive sputtering. Applied Physics Letters.2004,85(21):4929.
    [130]K. Iwata, P. Pons, A. Yamada, H. Shibata, K. Matsubara, K. Nakahara, H. Takasu,S. Niki. Bandgap engineering of ZnO using Se. Physica Status Solidi B-Basic Research,2002, 229(2):887.
    [131]VanvechtJa, Bergstre.Tk. Electronic structures of semiconductor alloys. Physical Review B, 1970,1(8):3351.
    [132]T. Makino, Y. Segawa,M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, H. Koinuma. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films. Applied Physics Letters,2001,78(9):1237-1239.
    [133]S. ChooPun, R. D. VisPute, W. Yang, R. P. Sharma, T. Venkatesan, H. Shen, Realization of band gap above 5.0eV in metastable cubic-Phase MgxZn1-x alloy films, Applied Physics Letters,2002,80(9):1529-1531.
    [134]A. Seko, F. Oba, A. Kuwabara, I. Tanaka. Pressure-induced phase transition in ZnO and ZnO-MgO pseudobinary system:A first-principles lattice dynamics study. Physical Review B,2005,72(2):024107.
    [135]A. Ohiomo, M. Kawasaki, T. Koida, K. Masubuehi, H. Koinunna, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, MgxZni.xO as a II-VI wide gap semiconductor alloy, Applied Physics Letters,1998,72(19):2466-2468.
    [136]X. H. Pan, W. Guo, Z. Z. Ye, B. Liu, Y. Che, C. T. Nelson, Y. Zhang, W. Tian, D. G Sehlom, X. Q. Pan. Epitaxial Zn1-xMgxO films grown on (111) Si by pulsed laser deposition. Chemical Physics Letters,2010,485(4-6):363-366.
    [137]C. W. Sun, P. Xin, C. Y. Ma, Q. Y. Zhang, Y. Q. Wang, Z. J. Yin, S. Huang, T. Chen. Optical and electrical properties of Zn1-xCdxO films grown on Si substrates by reactive radio-frequency magnetron sputtering. Applied Physics Letters,2006,89(18):181923.
    [138]D. W. Ma, Z. Z. Ye, H. M. Lu, J. Y. Huang, B. H. Zhao, L. P. Zhu, H. J. Zhang, P. M. He. Sputtering deposited ternary Zn1-xCdxO crystal films on Si(111) substrates. Thin Solid Films, 2004,461(2):250-255.
    [139]L. L. Chen, Z. Z. Ye, D. W. Ma, B. H. Zhao, C. T. Lin, L. P. Zhu. Influence of Ar/O2 gas ratios on the crystal quality and band gap of Zn1-xCdxO thin films. Journal of Crystal Growth,2005,274(3-4):458-463.
    [140]D. W. Ma, J. Y. Huang, Z. Z. Ye, L. Wang, B. H. Zhao. Relationship between photoluminescence and structural properties of the sputtered Zn1-xCdxO films on Si substrates. Optical Materials,2004,25(4); 367-371.
    [141]D. W. Ma, Z. Z. Ye, L. L. Chen. Dependence of structural and optical properties of Zn1-xCdxO films on the Cd composition. Physica Status Solidi a-Applied Research,2004, 201(13):2929-2933.
    [142]D. W. Ma, Z. Z. Ye, J. Y. Huang, L. P. Zhu, B. H. Zhao, J. H. He. Effect of post-annealing treatments on the properties of Zn1-xCdxO films on glass substrates. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2004,111(1):9-13.
    [143]F. Z. Wang, Z. Z. Ye, D. W. Ma, L. P. Zhu, Z. G. Fei. Formation of quasi-aligned ZnCdO nanorods andnanoneedles. Journal of Crystal Growth,2005,283(3-4):373-377.
    [144]F. Z. Wang, Z. Z. Ye, D. W. Ma, L. P. Zhu, F. Zhuge, H. P. He. Synthesis and characterization of quasi-aligned ZnCdO nanorods. Applied Physics Letters,2005,87(14): 143101.
    [145]Z. Z. Ye, D. W. Ma, J. H. He, J. Y. Huang, B. H. Zhao, X. D. Luo. Z. Y. Xu. Structural and photoluminescence properties of ternary Zn1-xCdxO crystal films grown on Si(111) substrates. Journal of Crystal Growth,2003,256(1-2):78-82.
    [146]G. D. Yuan, Z. Z. Ye, J. Y. Huang, L. P. Zhu. Fabrication and characterization of p-ZnO/n-Zn0.8Cd0.2O/n-ZnO heterojunction. Solid State Communication,2009,149, 290-292.
    [147]A. E. Blakesles, C. F. Aliotta. Man-made superlattice crystals. IBM Journal of Research and Develop,1970,14(6):686.
    [148]L. Esaki, R. Tsu. Superlattice and negative differential conductivity in semiconductors. IBM Journal of Research and Develop,1970,14(1):61.
    [149]刘恩科,朱秉升,罗晋生.半导体物理学.北京:电子工业出版社.第七版,2009:289-305.
    [150]A. Ohtomo, K. Tamura, M. Kawasaki, T. Makino, Y. Segawa, Z. K. Tang, G. K. L. Wong, Y. Matsumoto, H. Koinuma. Room-temperature stimulated emission of excitons in ZnO/(Mg,Zn)O superlattices. Applied Physics Letters,2000,77(14):2204-2206.
    [151]H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A.Ohtomo, K. Tamura, H. Koinuma. Biexciton emission from ZnO/Zno.74Mg0.26Omulti quantum wells. Applied Physics Letters, 2001,78(22):3385-3387.
    [152]C. H. Chi, T. Makino, K. Tamura, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma, Confinement-enhanced biexciton binding energy in ZnO/ZnMgO multiple quantum wells. Applied Physics Letters,2003,82(12):1848-1850.
    [153]J. W. Sun, Y. M. Lu,Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, D. X. Zhao, X. W. Fan. Room temperature excitonic spontaneous and stimulated emission properties in ZnO/MgZnO multiple quantum wells grown on sapphire substrate. Journal of Physics D. Applied Physics,2007,40(21):6541-6544.
    [154]B. P. Zhang, N. T. Binh, K. wakatsuki, C. Y. Liu, Y. Segawa. Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect. Applied Physics Letters,2005,86(3):032105.
    [155]X. Q. Gu, L. P. Zhu, Z. Z. Ye, H. P. He, Y. Z. Zhang, F. Huang, M. X. Qiu, Y. J. Zeng, F. Liu, W. Jaeger. Room-temperature photoluminescence from ZnO/ZnMgO multiple quantum wells grown on Si (111) substrates. Applied Physics Letters,2007,91(2):022103.
    [156]X. Q. Gu, H. P. He, L. P. Zhu, Z. Z. Ye, K. F. Huo, P. K. Chu. Dependence of photoluminescence of ZnO/Zn0.85Mg0.15O multi-quantum wells on barrier width. Physics Letters A,2009,373(36):3281-3284.
    [157]X. Q. Gu, L. P. Zhu, Z. Z. Ye, H. P. He, F. Liu, W. Jaeger, P. K. Chu, M. X. Qiu, Y. Z. Zhang. Structure and optical properties of ZnO/ZnMgO multi-quantum wells grown on Si(111) substrates. Superlattices and Microstructures,2008,44(2),197-202.
    [158]H. P. He, Y. Z. Zhang, Z. Z. Ye, H. H. Huang, X. Q. Gu, L. P. Zhu, B. H. Zhao. Photoluminescence properties of ZnO/Zn0.0.9Mg0.1O multi-quantum wells with different well widths. Journal of Physics D:Applied Physics,2007,40(17):5039-5043.
    [159]X. H. Pan, W. Guo, W. Tian, H. P. He, Z. Z. Ye, X. Q. Gu, D. G. Sehlom, X. Q. Pan, Optical properties of ZnO/Zn0.9Mg0.1O multiple quantum wells grown on (111) Si using buffer assisted pulsed laser deposition, Journal of Applied Physics,2010,107(3):033102.
    [160]J. H. Lim, C. K. Kang, K. K. Kim, K. Park, D. K. Hwang, S. J. Park, UV Electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radio frequency sputtering. Advanced Material,2006,18(20):2720-2724.
    [161]W. F. Yang, B. Liu, R. Chen, L. M. Wong, S. J. Wang, H. D. Sun. Pulsed laser deposition of high-quality ZnCdO epilayers and ZnCdO/ZnO single quantum well on sapphire substrate. Applied Physics Letters,2010,97(6):061911.
    [162]W. F. Yang, L. M. Wong, S. J. Wang, H. D. Sun, C. H. Ge, Alex Y. S. Lee, H. Gong. Photoluminescence characteristics of ZnCdO/ZnO single quantum well grown by pulsed laser deposition. Applied Physics Letters,2011,98(12):121903.
    [163]J. Jiang, L. P. Zhu, H. P. He, Y. Li, Y. M. Guo, L. Cao, Y. G. Li, K. W. Wu, L. Q. Zhang, Z. Z. Ye. Structural and optical properties of ZnCdO/ZnO multiple quantum wells grown on sapphire substrates using pulsed laser deposition. Journal of Applied Physics,2012,112(8): 083513.
    [164]K. Yamamoto, M. Adachi, T. Tawara, H. Gotoh, A. Nakamura, J. Temmyo. Synthesis and characterization of ZnCdO/ZnO multiple quantum wells by remote-plasma-enhanced MOCVD. Journal of Crystal Growth,2010,312(9):1496-1499.
    [165]S. Kalusniak, S. Sadofev, J. Puls, F. Henneberger. ZnCdO/ZnO-a new heterosystem for green-wavelength semiconductor lasing. Laser Photonics & Review,2009,3(3):233-242.
    [167]W. Lim, D. P. Norton, S. J. Pearton, X. J. Wang, W. M. Chen, I. A. Buyanova, A. Osinsky, J. W. Dong, B. Hertog, A. V. Thompson, W. V. Schoenfeld, Y. L. Wang, F. Ren. Migration and luminescence enhancement effects of deuterium in quantum wells. Applied Physics Letters, 2008,92(3):032108.
    [168]T. Makino, K. Saito, A. Ohtomo, M. Kawasaki, R. T. Senger, K. K.Bajaj. Monte Carlo simulation of localization dynamics of excitons in ZnO and CdZnO quantum well structures. Journal of Applied Physics,2006,99(6):066108.
    [169]Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, B. J. Kim. Excitonic ultraviolet lasing in ZnO-based light emitting devices. Applied Physics Letters, 2007,90(13):131115.
    [170]C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, B. Gil, T. Taliercio, M. Teisseire-Doninelli, B. Vinter, C. Deparis. Internal electric field in wurtzite ZnQ/Zno.7sMg0.22O quantum wells. Physical Review B,2005,72(24):241305.
    [171]C. Wetzel, M. Zhu, J. Senawiratne, T. Detchprohm, P. D. Persans, L. Liu, E. A. Preble, D. Hanser. Light-emitting diode development on polar and non-polar GaN substrates. Journal of Crystal Growth,2008,310(17):3987-3991.
    [172]P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, K. H. Ploog. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature,2000,406:865-868.
    [173]M. C. Schmidt, K. C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S. P. DenBaars, J. S. Speck. High power and high external efficiency m-plane InGaN light emitting diodes. Japanese Journal of Applied Physics,2007,46(7):126-128.
    [174]Y. J. Sun, O. Brandt, M. Ramsteiner, H. T. Grahn, K. H. Ploog. Polarization anisotropy of the photoluminescence of M-plane (In,Ga)N/GaN multiple quantum wells. Applied Physics Letters,2003,82(22):3850-3852.
    [175]S. K. Han, J, G. Kim, J.-H. Kim, S.-K. Hong. Effects of two-step growth by employing Zn-rich and O-rich growth conditions on properties of (1120) ZnO films grown by plasma-assisted molecular beam epitaxy on sapphire. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,2009,27(3):1635-1640.
    [176]Z. Yang, H. M. Zhou, W. V. Chen, L. Li, J. Z. Zhao, P. K. L. Yu, J. L. Liu. Homobuffer thickness effect on the background electron carrier concentration of epitaxial ZnO thin films. Journal of Applied Physics,2010,108(6):066101.
    [177]Y. Kashiwaba, T. Abe, A. Nakagawa, H. Endo, I. Niikura, Y. Kashiwaba. Homoepitaxial growth of high-quality nonpolar ZnO films by MOCVD and evaluation of the homoepitaxial ZnO films by XRD measurement for asymmetric planes, physica status solidi (a),2009,206(5):944-947.
    [178]T. Abe, Y. Kashiwaba, S. Onodera, F. Masuoka, A. Nakagawa, H. Endo, I. Niikura, Y. Kashiwaba. Homoepitaxial growth of non-polar ZnO films on off-angle ZnO substrates by MOCVD. Journal of Crystal Growth,2007,298:457-460.
    [179]Y.-T. Ho, W.-L. Wang, C.-Y. Peng, M.-H. Liang, J.-S. Tian, C.-W. Lin, L. Chang. Growth of nonpolar (1120) ZnO films on LaA103 (001) substrates. Applied Physics Letters,2008, 93(12):121911.
    [180]H. Lin, S. Zhou, J. Zhou, X. Liu, S. Gu, S. Zhu, Z. Xie, P. Han, R. Zhang. Structural and optical properties of a-plane ZnO thin films synthesized on y-LiA102 (302) substrates by low pressure metal-organic chemical vapor deposition. Thin Solid Films,2008,516(18): 6079-6082.
    [181]J. H. Kim, S. K. Han. S.1. Hong, S.-K. Hong, J. W. Lee, J. Y. Lee, J.-H. Song, J. S. Park, T. Yao. Growth and structural properties of ZnO films on (1010) m-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures,2009,27(3):1625-1630.
    [182]C.-S. Ku, H.-Y. Lee, J.-M. Huang, C.-M. Lin. Epitaxial Growth of m-Plane ZnO Thin Films on (1010) Sapphire Substrate by Atomic Layer Deposition with Interrupted Flow. Crystal Growth & Design,2010,10(4):1460-1463.
    [183]H. Matsui, H. Tabata. Correlation of self-organized surface nanostructures and anisotropic electron transport in nonpolar ZnO (1010) homoepitaxy. Journal of Applied Physics,2006, 99(12); 124307.
    [184]D. TaiNoff, M. Al-Khalfioui, C. Departs, B. Vinter, M. Teisseire, C. Morhain, J. M. Chauveau. Residual and nitrogen doping of homoepitaxial nonpolar m-plane ZnO films grown by molecular beam epitaxy. Applied Physics Letters,2011,98(13):131915.
    [185]E. Cagin, J. Yang, W. Wang, J. D. Phillips, S. K. Hong, J. W. Lee, J. Y. Lee. Growth and structural properties of m-plane ZnO on MgO (001) by molecular beam epitaxy. Applied Physics Letters,2008,92(23):233505.
    [186]M. M. C. Chou, D.-R. Hang, C. Chen. Y.-H. Liao. Epitaxial growth of nonpolar m-plane ZnO (1010) on large-size LiGaO2 (100) substrates. Thin Solid Films,2011,519(11): 3627-3631.
    [187]H. Lin, S. M. Zhou, T. H. Huang, H. Teng, X. D. Liu, S. L. Gu, S. M. Zhu, Z. L. Xie, P. Han, R. Zhang. Characterization of m-plane ZnO thin film on gamma-LiA102 (100) substrate by metal-organic chemical vapor deposition. Journal of Alloys and Compounds,2009,467(1-2): L8-L10.
    [188]M. M. C. Chou, L. W. Chang, D. R. Hang, C. L. Chen, D. S. Chang, C. A. Li. Crystal Growth of Nonpolar m-Plane ZnO on a Lattice-Matched (100) gamma-LiAlO2 Substrate. Crystal Growth & Design,2009,9(5):2073-2078.
    [189]J.-M. Chauveau, D.A. Buell, M. Laügt, P. Vennéguès, M. Teisseire-Doninelli, S. Berard-Bergery, C. Deparis, B. Lo, B. Vinter, C. Morhain. Growth of non-polar ZnO/(Zn,Mg)O quantum well structures on R-sapphire by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth,2007,301-302:366-369.
    [190]J.-M. Chauveau, C. Morhain, B. Lo, B. Vinter, P. Vennéguès, M. Laügt, D.A. Buell, M. Teisseire-Doninelli, G. Neu. Growth and characterization of A-plane ZnO and ZnCoO based heterostructures. Applied Physics A:Materials Science & Processing,2007,88(1): 65-69.
    [191]J.-M. Chauveau, M. Laügt, P. Vennegues, M. Teisseire, B. Lo, C. Deparis, C. Morhain, B. Vinter. Non-polar α-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy. Semiconductor Science and Technology,2008,23(3):035005.
    [192]L. Béaur, T. Bretagnon, C. Brimont, T. Guillet, B. Gil, D. Tainoff, M. Teisseire, J.-M. Chauveau. Low temperature reflectivity study of nonpolar ZnO/(Zn,Mg)O quantum wells grown on M-plane ZnO substrates. Applied Physics Letters,2011,98(10):101913.
    [193]J.-M. Chauveau, M. Teisseire, H. Kim-Chauveau, C. Deparis, C. Morhain, B. Vinter. Benefits of homoepitaxy on the properties of nonpolar (Zn,Mg)O/ZnO quantum wells on a-plane ZnO substrates. Applied Physics Letters,2010,97(8):081903.
    [194]S. K. Han, S. K. Hong, J. W. Lee, J. Y. Lee, J, H. Song, Y. S. Nam, S. K. Chang, T. Minegishi, T. Yao. Structural and optical properties of non-polar a-plane ZnO films grown on R-plane sapphire substrates by plasma-assisted molecular-beam epitaxy. Journal of Crystal Growth,2007,309(2):121-127.
    [195]T. Moriyama, S. Fujita. Growth Behavior of Nonpolar ZnO on m-plane and r-plane Sapphire by Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics,2005, 44(11):7919-7921.
    [196]J. W. Lee, J. H. Kim, S. K. Han, S. K. Hong, J. Y. Lee, S. I. Hong, T. Yao. Interface and defect structures in ZnO films on m-plane sapphire substrates. Journal of Crystal Growth, 2010,312(2):238-244.
    [197]U. Diebold, L. V. Koplitz, O. Dulub. Atomic-scale properties of low-index ZnO surfaces. Applied Surface Science,2004,237(1-4):336-342.
    [198]A. Urbieta, P. Fernandez, J. Piqueras, T. Sekiguchi. Seanning tunneling spectroscopy characterization of ZnO single crystals. Semiconduetor Science Technology,2001,6(7): 589-593.
    [199]P. Ding, X. H. Pan, J. Y. Huang, H. P. He, B. Lu, H. H_ Zhang, Z. Z. Ye. P-type non-polar m-plane ZnO films grown by plasma-assisted molecular beam epitaxy. Journal of Crystal Growth,2011,331(1):15-17.
    [200]丁萍.P-MBE法生长ZnO单晶薄膜及Na掺杂研究[博士学位论文].杭州:浙江大学材料系,2013:76-104.
    [201]L. P. Dai, H. Deng, J. J. Chen, M. Wei. Realization of the intrinsic p-type ZnO thin films by SSCVD. Solid State Communication,2007,143:378-381.
    [202]S. Gangil, A. Nakamura, M. Shimomura, J. Temmyo. Nonpolar (1120) P-type Nitrogen-Doped ZnO by Remote-Plasma-Enhanced Metalorganic Chemical Vapor Deposition.2007,46:L549-L551.
    [203]D. Ta?noff, M. Al-Khalfioui, C. Deparis, B. Vinter, M. Teisseire, C. Morhain, J.-M. Chauveau. Residual and nitrogen doping of homoepitaxial nonpolar/n-plane ZnO films grown by molecular beam epitaxy. Applied Physics Letters,2011,98(13):131915.
    [204]M. Wraback, H. Shen, S. Liang, C. R. Gorla, Y. Lu. High contrast, ultrafast optically addressed ultraviolet light modulator based upon optical anisotropy in ZnO films grown on R-plane sapphire. Applied Physics Letters,1999,74(4):507-509.
    [205]N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. M. Chen, Y. C. Lu. Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire. Applied Physics Letters,2004,85(17):3072-3074.
    [206]J. Zhu, Y. Chen, G. Saraf, N. W. Emanetoglu, Y. C. Lu. Voltage tunable surface acoustic wave phase shifter using semiconducting/piezoelectric ZnO dual layers grown on r-Al2O3. Applied Physics Letters,2006,89(10):103513.
    [207]D. Dijkkamp, T. Venkatesan. X. D. Wu, S. A. Shaheen, N. Jisrawi, Y. H. Minlee, W. L. Mclean, M. Croft. Preparation of Y-Ba-Cu Oxide Superconductor Thin-Films Using Pulsed Laser Evaporation from High-Tc Bulk Material. Applied Physics Letters,1987,51(8): 619-621.
    [208]K. W. Edmonds, K. Y. Wang, R. P. Campion, A. C. Neumann, N. R. S. Farley, B. L. Gallagher, C. T. Foxon. High-Curie-temperature Ga1-xMnxAs obtained by resistance-monitored annealing. Applied Physics Letters,2002,81(26):4991-4993.
    [209]叶志镇,吕建国,吕斌,张银珠.半导体薄膜技术与物理.杭州:浙江大学出版社.2008:134-137.
    [210]R. K. Singh, J. Narayan. Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model. Physics Review B,1990,41(13):8843.
    [211]L. P. Dai, H. Deng, G. Chen, M. Wei, Y. Li. Synthesis and characterization of a novel precursor for thin films of zinc oxide by SSCVD. Materials Letters,2007, 61(16):3539-3541.
    [212]B. Lu, M. J. Ma, Y. H. Ye, J. G. Lu, H. P. He, Z. Z. Ye. Rational growth of semi-polar ZnO texture on a glass substrate for optoelectronic applications. Journal of Physics D:Applied Physics,2013,46 (5):055105.
    [213]B. Szyszka. Transparent and conductive aluminum doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering. Thin Solid Films,1999,351(1-2):164-169.
    [214]D. H. Kim, N. G. Cho, H. G. Kim, W. Y. Choi. Structural and electrical properties of indium doped ZnO thin films fabricated by RF magnetron sputtering. Journal of The Electrochemical Society,2007,154(11):H939-H943.
    [215]C. F. Klingshim, B. K. Meyer, A. Waag, A. Hoffillann, J.Geurts. Zinc oxide:from fundamental properties towards novel applications. New York:Springer,2010:104-105.
    [216]P. Ding, X. H. Pan, J. Y. Huang, B. Lu, H. H. Zhang, W. Chen, Z. Z. Ye. Growth of p-type a-plane ZnO thin films on r-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Materials Letters,2012,71:18-20.
    [217]D. C. Oh, J. J. Kim, H. Makino, T. Hanada, M. W. Cho, T. Yao, H. J. Ko. Characteristics of Schottky contacts to ZnO:N layers grown by molecular-beam epitaxy. Applied Physics Letters,2005,86(4):042110.
    [218]H. Maki, Ⅰ. Sakaguchi, N. Ohashi,S. Sekiguchi, H. Haneda, J. Tanaka, N. Ichinose. Nitrogen Ion Behavior on Polar Surfaces of ZnO Single Crystals. Japanese Journal of Applied Physics,2003,42(1):75-77.
    [219]D. W. Hamby, D. A. Lucca, M. J. Klopfstcin. Photoluminesccncc of mechanically polished ZnO. Journal of Applied Physics,2005,97(4):043504.
    [220]林时胜.ZnO薄膜和纳米线中的施主、受主掺杂研究[博士学位论文].杭州:浙江大学材料系,2010:71-72.
    [221]Z. Z. Ye, L. Q. Zhang Li, J. Y. Huang, Y. Z. Zhang, L. P. Zhu, B. Lü, J. G. Lü, L. Wang, Y. Z. Jin., J. Jiang, Y. Xue, J. Zhang, S. S. Lin, D. Yang. Room-temperature electroluminescence of p-ZnxMg1-xO:Na/n-ZnO p-n junction light emitting diode. Journal of Semiconductors,2009,30(8):081001.
    [222]S. S. Lin, H. P. He, Y. F. Lu, Z. Z. Ye. Mechanism of Na-doped ρ-type ZnO films: Suppressing Na interstitials by codoping with H and Na of appropriate concentrations. Journal of Applied Physics,2009,106(9):093508.
    [223]L. C. Tien, S. J. Pearton, D. P. Norton, F. Ren. Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition. Journal of Materials Science,2008,43(21):6925-6932.
    [224]Y. Sun, G. M. Fuge, M. N. R. Ashfold. Growth mechanisms for ZnO nanorods formed by pulsed laser deposition. Superlattices Microstructure,2006,39(1-4):33-40.
    [225]H. H. Zhang, J. G. Lu, X. P. Yang, Z. Z. Ye, J. Huang, B. Lu, L. Hu, Y. Li, Y. Z. Zhang, D. H. Li. Inclined and ordered ZnO nanowire arrays developed on non-polar ZnO seed-layer films. CrystEngComm,2012,14:4501-4506.
    [226]J. Jiang, L. P. Zhu, Y. Li, Y. M. Guo, W. S. Zhou, L. Cao, H. P. He, Z. Z. Ye. Band gap modulation of ZnCdO alloy thin films with different Cd contents grown by pulsed laser deposition. Journal of Alloys and Compounds,2013,547:59-62.
    [227]S. Sadofev, S. Blumstengel, J. Cui, J. Puls, S. Rogaschewski, P. Sch?fer, F. Henneberger. Visible band-gap ZnCdO heterostructures grown by molecular beam epitaxy. Applied Physics Letters,2006,89(20):201907.
    [228]J. Zuniga-Péreza, V. Mufioz-Sanjosé, M. Lorenz, G. Benndorf, S. Heitsch, D. Spemann, M. Grundmann. Structural characterization of a-plane Zn1-xCdxO (0≤x≤0.085) thin films grown by metal-organic vapor phase epitaxy. Journal of Applied Physics,2006,99(2):023514.
    [229]X. D. Zhang, M. L. Guo, W. X. Li, C. L. Liu. First-principles study of electronic and optical properties in wurtzite Zn1-xCdxO. Journal of Applied Physics,2008,103(6):063721.
    [230]X. J. Wang, I. A. Buyanova, W. M. Chen,M. Izadifard,S. Rawal, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong, A. Dabiran. Band gap properties of Znl-xCdxO alloys grown by molecular-beam epitaxy. Applied Physics Letters,2006,89(15):151909.
    [231]S. Lautenschlaeger, S. Eisermann, M. N. Hofmann, U. Roemer, M. Pinnisch, A. Laufer, B. K. Meyer, H. Wenckstern, A. Lajn, F. Schmidt, M. Grundmann, J. Blaesing, A. Krost. Morphological, structural and electrical investigations on non-polar a-plane ZnO epilayers. Journal of Crystal Growth,2010,312(14):2078-2082.
    [232]T. S. Ko, T. C. Lu, L. F. Zhuo, W. L. Wang, M. H. Liang, H. C. Kuo, S. C. Wang, Li Chang, D. Y. Lin. Optical characteristics of a-plane ZnO/Zn 0.8 Mg 0.2 O multiple quantum wells grown by pulsed laser deposition. Journal of Applied Physics,2010,108(7):073504.
    [233]G. Coli, K. K. Bajaj. Excitonic transitions in ZnO/MgZnO quantum well heterostructures. Applied Physics Letters,2001,78(19):2861.
    [234]C. F. Li, Y. S. Huang, L. Malikova, Fred H. Pollak. Temperature dependence of the energies and broadening parameters of the interband excitonic transitions in wurtzite GaN. Physical Review B,1997,55(15):9251.
    [235]T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, H. Koinuma. Radiative recombination of electron-hole pairs spatially separated due to quantum-confined Stark and Franz-Keldish effects in ZnO/Mg0.27Zn0.730 quantum wells. Applied Physics Letters,2002,81(13):2355-2357.
    [236]M. Yin, Y. Gu, I. L. Kuskovsky, T. Andelman, Y. M. Zhu, G. F. Neumark, S. O*Brien. Zinc Oxide Quantum Rods. Journal of the American Chemical Society,2004,126(20): 6206-6207.
    [237]N. Fujimura, T. Nishihara, S. Goto, J. Xu, T.Ito. Control of preferred orientation for ZnO films:control of self-texture. Journal of Crystal Growth,1993,130(1-2):269-279.
    [238]P. Sharma, K. Sreenivas, K. V. Rao. Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering. Journal of Applied Physies,2003, 93(7):3963.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.