PLD方法生长ZnO/ZnMgO量子阱及结构、光学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO是一种重要的宽带隙半导体材料,与GaN的带隙宽度基本上相同,是制备紫外半导体发光器件和半导体激光器的理想材料。与GaN相比,ZnO不仅具有生长温度低、无毒、原料成本相对低廉等优点,还具有高达60 meV的激子束缚能(后者仅为24 meV),因而获得受激发射的阈值要低得多。另一方面,ZnO还具有丰富的纳米结构,包括纳米线、纳米管、纳米带、纳米环、纳米点等等。当材料尺寸降低至量子尺度时,将出现许多不同于体材料的性能。
     本文采用脉冲激光沉积(PLD:pulsed laser deposition)方法进行ZnO薄膜与ZnO/ZnMgO量子阱的生长。为了探索量子阱的生长条件,我们首先研究了生长温度、氧压、缓冲层及退火处理等对制备的ZnO薄膜的形貌特征和晶体质量的影响,获得了取得平整薄膜的最佳生长参数。在此基础上,实现了ZnO/ZnMgO量子阱的可控生长,并且深入分析了其光致发光性能。现简要介绍如下:
     1、利用PLD方法探索了ZnO薄膜的生长工艺。本文通过改变生长温度、氧压、激光器等参数,分析了衬底温度、薄膜厚度、缓冲层、退火处理等对薄膜的形成和形貌的影响。
     2、探索了衬底温度的改变对ZnMgO:Al合金薄膜的结构与电学性能的影响,当生长温度为350℃获得了最低电阻率为5.6×10~(-4)Ωcm的薄膜,分析了电阻率发生改变的原因,为今后制备调制掺杂超晶格结构打下了良好的基础。
     3、在最佳生长条件下,通过改变阱层厚度、势垒层厚度及组分等结构参数在Si(111)衬底上可控地制备出一系列ZnO/ZnMgO多量子阱,透射电镜(TEM)结果表明这些量子阱具有良好的周期性结构。
     4、通过对光致发光(photoluminescence,PL)结果分析表明,量子阱室温下的带边发光具有激子特征。随着势阱层的厚度减小,势阱层PL发射峰发生蓝移,这是量子约束(尺寸)效应。我们还从实验结果中发现,量子阱具有高于体材料的激子束缚能,并且激子束缚能随着势阱层厚度的减小而增加。
     5、通过对ZnO/ZnMgO单量子阱和多量子阱的PL谱随温度的变化情况发现,量子阱中的激子在低温下是“局域化”的,随着温度的上升,激子逐渐地“去局域化”转化为自由激子。本文还发现,“势谷”的深度受势阱层的厚度和势垒层的组分影响。
ZnO is a semiconductor with a direct wide band gap of 3.37 eV at room temperature (RT),nearly to that of GaN.Thus,ZnO is an ideal candidate for applications in shortwave optoelectronic devices,such as ultraviolet(UV) light-emitting devices and laser diodes.ZnO has mainly two advantages over GaN,i.e.,(1) low deposition temperature, low cost and innoxiousness,(2) large exciton binding energy of 60 meV in comparison to that of 26 meV in GaN.On the other hand,there are abundant nanostructures in ZnO, including nanowires,nanotubes,nanobelts,nanoloops,nanodots,and so on.Besides,it is well known that ZnO quantum-size-scale materials exhibit many novel characteristics different from bulk ZnO.
     In the paper,ZnO films and ZnO/ZnMgO quantum wells were grown by pulsed laser deposition(PLD).By optimizing the growth parameter(including substrate temperature, oxygen partial pressure,film thickness,and annealing treatment),the smooth ZnO films were achieved with a roughness no more than 1 nm.The growth parameter was then utilized to fabricate ZnO/ZnMgO quantum wells.The optical properties were analyzed by photoluminescence(PL) spectra.
     1.ZnO films were grown on Si(111) substrates by PLD.We investigate the dependence of the ZnO films on growth temperatures,oxygen pressures,and laser parameters.
     2.Effects of substrate temperatures on the structure,optical and electrical properties were investigated.The lowest resistivity of 5.6×10~(-4)Ωcm was achieved at the growth temperature of 350℃.The mechanism underlying the variation in the resistivity was revealed.
     3.A series of ZnO/ZnMgO multiple quantum wells(MQWs),with various well width and barrier width and barrier composition,were grown on Si(111) substrates controllably under the optimized growth conditions.TEM analysis reveals that the MQWs exhibit periodic structure with sharp interface.
     4.Photoluminescence analysis suggests that the MQWs show excitonic near-bandedge emission at room temperature.The well layer emission shows an obvious blueshift with a reduction in the well layer thickness.The excitons in the quantum wells have larger exciton binding energy than bulk ZnO.Besides,the exciton binding energy increases as the well layer thickness decreases.
     5.We find that the excitons are localized in the ZnO/ZnMgO single and multiple quantum wells at low temperatures by photoluminescence(PL) spectra.With an increase in temperature,the localized excitons are detrapped from the potential minima and transferred into free excitons.The depth of the potential minima is dependent of the well width and barrier width.
引文
[1](U|¨).(O|¨)zg(u|¨)r,Ya.I.Alivov,C.Liu,A.Teke,M.A.Reshchikov,S.Dogan,V.Avrutin,S.-J.Cho,and H.Morkoc,A comprehensive review of ZnO materials and devices,J.Appl.Phys.2005,98,041301
    [2]M.H.Huang,S.Mao,H.Feick,H.Q.Yan,Y.Y.Wu,H.Kind,E.Weber,R.Russo,P.D.Yang,Room-temperature ultraviolet nanowire nanolasers,Science,2001,292,1897-1999
    [3]A.Tsukazaki,A.Ohtomo,T.Onuma,M.Ohtani,T.Makino,M.Sumiya,K.Ohtani,S.E Chichibu,S.Fuke,Y.Segawa,H.Ohno,H.Koinuma,M.Kawasaki,Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO,Nature Materials,2005,4,42-46
    [4]M.Law,L.E.Greene,J.C.Johnson,R.Saykally,P.D.Yang,Nanowires dye-sensitized solar cells,2005,4,455-459
    [5]D.K.Hwang,M.S.Oh,J.H.Lim and S.J.Park,ZnO thin films and light-emitting diodes,J.Phys.D:Appl.Phys.2007,40,R387-R442
    [6]C.Klingshirn,R.Hauschild,J.Fallert,and H.Kalt,Room-temperature stimulated emission of ZnO:Alternatives to excitonic lasing,Phys.Rev.B 2007,75,115203
    [7]Eunice S.P.Leong,S.F.Yu,and S.P.Lau,Direct edge-emitting UV random laser diodes,Appl.Phys.Lett.2006,89,221109
    [8]W.Z.Xu,Z.Z.Ye,Y.J.Zeng,L.P.Zhu,B.H.Zhao,L.Jiang,J.G.Lu,H.P.He,and S.B.Zhang,ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition,Appl.Phys.Lett.2006,88,173506
    [9]Z.K.Tang,G.K.L.Wong,P.Yu,M.Kawasaki,A.Ohtomo,H.Koinuma,and Y.Segawa,Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,Appl.Phys.Lett.1998,72,3270-3272
    [10]S.J.Jiao,Z.Z.Zhang,Y.M.Lu,D.Z.Shen,B.Yao,J.Y.Zhang,B.H.Li,D.X.Zhao,X.W.Fan,and Z.K.Tang,ZnO p-n junction light-emitting diodes fabricated on sapphire substmtes,Appl.Phys.Lett.2006,88,031911
    [11]A.Ohtomo,K.Tamura,M.Kawasaki,T.Makino,Y.Segawa,Z.K.Tang,G.K.L.Wong,Y.Matsumoto,and H.Koinuma,Room-temperature stimulated emission of excitons in ZnO/(Mg,Zn)O superlattices,Appl.Phys.Lett.2000,77,2204-2206
    [12]G.Frankowsky,F.Steuber,V.Harle,F.Scholz,and A.Hangleiter,Optical gain in GaInN/GaN heterostructures,Appl.Phys.Lett.1996,68,3746
    [13]H.D.Sun,T.Makino,Y.Segawa,M.Kawasaki,A.Ohtomo,K.Tamura,and H.Kionuma,Enhancement of exciton binding energies in ZnO/ZnMgO multiquantum wells,J.Appl.Phys.2002,91,1993-1996
    [14]A.E.Blakesles,C.E Aliotta,Man-made superlattice crystals.IBM J.Res Develop,1970,14,686
    [15]L.Esaki,R.Tsu,Superlattice and negative differential conductivity in semiconductors,IBM J.Res.Develop,1970,14,61
    [16]H.Kamimura,Y.Toyozawa,Symposium on recent topics in semiconductor physics,Singapore:word Scientific Publishing Co.,1983
    [17]刘恩科,朱秉升,罗晋生著,半导体物理学(第6版),电子工业出版社,2007
    [18]Vladimir V.Mitin,Viatcheslav A.Kochelap,and Michael A.Stroscio,Quantum heterostructures,Cambridge University Press,1999
    [19]C.Weisbuch and B.Vinter,Quantum semiconductor structures,Academic Press,Inc.1991
    [20]T.Makino,K.Tamura,C.H.Chia,Y.Segawa,M.Kawasaki,A.Ohtomo,and H.Koinuma,Radiative recombination of electron-hole pairs spatially separated due to quantum-confined Stark and Franz-Keldish effects in ZnO/Mg_(0.27)Zn_(0.73)O quantum wells,Appl.Phys.Lett.2002,81,2355
    [21]T.Bretagnon,P.Lefebvre,T.Guillet,T.Taliercio,B.Gil,and C.Morhain,Barrier composition dependence of the internal electric field in ZnO/Zn_(1-x)Mg_xO quantum wells,Appl.Phys.Lett.2007,90,201912
    [22]T.Makino,Y.Segawa,A.Tsukazaki,A.Ohtomo,and M.Kawasaki,Photo-excitation screening of the built-in electric field in ZnO single quantum wells,Appl.Phys.Lett.2008,93,121907
    [23]J.A.Davis,L.V.Dao,X.Wen,C.Ticknor,P.Harmaford,V.A.Coleman,H.H.Tan,C.Jagadish,K.Koike,S.Sasa,M.Inoue,and M.Yano,Suppression of the internal electric field effects in ZnO/Zn_(0.7)Mg_(0.3)O quantum wells by ion-implantation induced intermixing,Nanotechnology,2008,19,055205
    [24]B.P.Zhang,B.L.Liu,J.Z.Yu,and Q.M.Wang,C.Y.Liu and Y.C.Liu,Y.Segawa,Photoluminescence and built-in electric field in ZnO/Mg_(0.1)Zn_(0.9)O quantum wells,Appl.Phys.Lett.2007,90,132113
    [25]M.Yin,Y.Gu,I.L.Kuskovsky,T.Andelman,Y.Zhu,G.F.Neumark,and S.O'Brien,Zinc oxide quantum rods,J.Am.Chem.Soc.2004,126,6206-6210
    [26]S.Moonsub and G.S.Philippe,Organic-Capped ZnO Nano-crystals:Synthesis and n-type character,J.Am.Chem.Soc.2001,123,11651-11653
    [27]G.Coli and K.K.Bajaj,Excitonic transitions in ZnO/MgZnO quantum well heterostructures,Appl.Phys.Lett.2001,78,2861-2863
    [28]Y.H.Cho,G.H.Gainer,A.J.Fischer,J.J.Song,S.Keller,U.K.Mashra,and S.P.DenBraas,"S-shaped" temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,Appl.Phys.Lett.1998,73,1370-1372
    [29]T.Makino,N.T.Tuan,H.D.Sun,C.H.Chia,Y.Segawa,M.Kawasaki,A.Ohtomo,K.Tamura,T.Suemoto,H.Akiyama,M.Baba,S.Saito,T.Tomita,and H.Koinuma,Temperature dependence of near ultraviolet photoluminescence in ZnO/ (Mg, Zn)O multiple quantum wells, Appl. Phys. Lett. 2001,78, 1979-1981
    
    [30] M. Al-Suleiman, A. El-Shaer, A. Bakin, H. H. Wehmann, and A. Waag, Optical investigations and exciton localization in high quality Zn_(1-x)Mg_xO-ZnO single quantum wells, Appl. Phys. Lett. 2007,91,191101
    
    [31] J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, p-type conduction in N-Al co-doped ZnO thin films, Appl. Phys. Lett. 2004, 85, 3134-3136
    
    [32] L. L. Chen, J. G. Lu, Z. Z. Ye, Y. M. Lin, B. H. Zhao, Y. M. Ye, J. S. Li, and L. P. Zhu, p-type behavior in In-N codoped ZnO thin films, Appl. Phys. Lett. 2005, 87, 252106
    
    [33] Y. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G. Lu, L. P. Zhu, and B. H. Zhao, Dopant source choice for formation of p-type ZnO: Li acceptor, 2006, 88, 062107
    
    [34] J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu, L. Wang, B. H. Zhao, and Q. L. Liang, Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method, Appl. Phys. Lett. 2006,88,222114
    
    [35] Y. J. Zeng, Z. Z. Ye, J. G. Lu, W. Z. Xu, L. P. Zhu, and B. H. Zhao, Identification of acceptor states in Li-doped p-type ZnO thin films, Appl. Phys. Lett. 2006, 89, 042106
    
    [36] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Band gap engineering based on Mg_xZn_(1-x)O and Cd_yZn_(1-y)O ternary alloy films, Appl. Phys. Lett. 2001, 78, 1237-1239
    
    [37] A. B. M. Almamun Ashrafi and Y. Segawa, Determination of Mg composition in Mg_xZn_(1-x)O alloy: Validity of Vegard's law, J. Vac. Sci. Technol. B 2005, 23, 2030-2033
    
    [38] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, Mg_xZn_(1-x)O as an II-VI widegap semiconductor alloy, Appl. Phys. Lett. 1998, 72, 2466-2468
    
    [39] Y. R. Ryu, T. S. Lee, J. A. Lubguban, A. B. Corman, H. W. White, J. H. Leem, M. S. Han, Y. S. Park, C. J. Youn, and W. J. Kim, Wide-band gap oxide alloy: BeZnO, Appl .Phys. Lett. 2006, 88, 052103
    
    [40] C. Yang, X. M. Li, Y. F. Gu, W. D. Yu, X. D. Gao, and Y. W. Zhang, ZnO based oxide system with continuous bandgap modulation from 3.7 to 4.9 eV, Appl. Phys. Lett. 2008, 93, 112114
    
    [41] J. A. V. Vechten and T. K. Bergstresser, Electronic structures of semi- conductor alloys, Phys. Rev.B 1970,1,3351
    
    [42] Th. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region, Appl. Phys. Lett. 2004, 84, 5359
    [43] T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy, J. Appl. Phys. 2009,109, 023505
    [44] Y. R. Ryu, T. S. Lee, and H. W. White, A technique of hybrid beam deposition for synthesis of ZnO and other metal oxides, J. Cryst. Growth 2004, 261, 502-505
    
    [45] Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim, Y. S. Park, and C. J. Youn, Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes, Appl. Phys. Lett. 2006,88,241108
    
    [46] Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B. J. Kim, Excitonic ultraviolet lasing in ZnO-based light emitting devices, Appl. Phys. Lett. 2007, 90, 131115
    [47] D. W. Ma, Z. Z. Ye, and L. L. Chen, Dependence of structural and optical properties of Zn_(1-x)Cd_xO films on the Cd composition, phys. Stat. sol. (a) 2004, 201, 2929-2933
    
    [48] G. D. Yuan, Z. Z. Ye, J. Y. Huang, and L. P. Zhu, Fabrication and characterization of p-ZnO/n- Zn_(0.8)Cd_(0.2)O/n-ZnO heterojunction, Solid State Commun. 2009, 149, 290-292
    
    [49] P. Misra, T. K. Sharma, S. Porwal, and L. M. Kukreja, Room temperature photo- luminescence from ZnO quantum wells grown on (0001) sapphire using buffer assisted pulsed laser deposition, Appl. Phys. Lett. 2006, 89, 161912
    
    [50] S. Heitsch, G. Benndorf, G. Zimmermann, C. Schulz, D. Spemann, H. Hochmuth, H. Schmidt, T. Nobis, M. Lorenz, M. Grundmann, Optical and structural properties of MgZnO/ZnO hetero- and double heterostructures grown by pulsed laser deposition, Appl. Phys. A 2007, 88, 99-102
    [51] J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, D. X. Zhao and X. W. Fan, Room temperature excitonic spontaneous and stimulated emission properties in ZnO/ MgZnO multiple quantum wells grown on sapphire substrate, J. Phys. D: Appl. Phys. 2007, 40, 6541-6545
    
    [52] C. Klingshirn, J. Fallert, H. Zhou, and H. Kalt, Comment on "Excitonic ultraviolett lasing in ZnO-based light emitting devices" [Appl. Phys. Lett. 90, 131115 (2007)], Appl. Phys. Lett. 2007, 91, 126101
    
    [53] S. Sadofev, S. Kalusniak, J. Puls, P. Schafer, S. Blumstengel, and F. Henneberger, Visible- wavelength laser action of ZnCdO/(Zn,Mg)O multiple quantum well structures, Appl. Phys. Lett. 2007,91,231103
    
    [54] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nat. Mater. 2005, 4, 42- 46
    [55] W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, Y. Hang, and C. L. Zhang, Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique, Appl. Phys. Lett. 2006, 88, 092101
    
    
    [56] J. C. Sun, J. Z. Zhao, H. W. Liang, J. M. Bian, L. Z. Hu, H. Q. Zhang, X. P. Liang, W. F. Liu, and G. T. Du, Realization of ultraviolet electroluminescence from ZnO homojunction with n-ZnO/p-ZnO: As/GaAs structure, Appl. Phys. Lett. 2007, 90, 121128
    
    [57] J. C. Sun, H. W. Liang, J. Z. Zhao, J. M. Bian, Q. J. Feng, L. Z. Hu, H. Q. Zhang, X. P. Liang, Y. M. Luo, and G. T. Du, Ultraviolet electroluminescence from n-ZnO:Ga/p-ZnO:N homojunction device on sapphire substrate with p-type ZnO:N layer formed by annealing in N_2O plasma ambient, Chem. Phys. Lett. 2008,460, 548-551
    
    [58] J. W Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, D. X. Zhao, and X. W. Fan, Excitonic electroluminescence from ZnO-based heterojunction light emitting diodes, J. Phys. D: Appl. Phys. 2008, 41, 155103
    
    [59] H. Zhu, C. X. Shan, B. H. Li, J. Y. Zhang, B. Yao, Z. Z. Zhang, D. X. Zhao, D. Z. Shen, and X. W. Fan, Ultraviolet Electroluminescence from MgZnO-Based Heterojunction Light-Emitting Diodes, J. Phys. Chem. C 2009, 113, 2980-2982
    
    [60] J. H. Lim, C. K. Kang, K. K. Kim, II K. Park, D. K. Hwang, and S. J. Park, UV Electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radio frequency sputtering, Adv. Mater. 2006, 18, 2720-2724
    
    [61] Y. J. Zeng, Z. Z. Ye, Y. F. Lu, W. Z. Xu, L. P. Zhu, J. Y. Huang, H. P. He, and B. H. Zhao, Plasma-free nitrogen doping and homojunction light-emitting diodes based on ZnO, J. Phys. D: Appl. Phys. 2008,41, 165104
    
    [62] L. Zou, Z. Z. Ye, J. Y. Huang, and B. H. Zhao, Structural characterization and photoluminescent properties of Zn_(1-x)Mg_xO Films on silicon, Chin. Phys. Lett. 2002, 19, 1350-1353
    
    [63] L. Zou, Z. Z. Ye, J. Y. Huang, and B. H. Zhao, Effect of substrate temperature on the properties of Zn_(1-x)Mg_xO films on silicon, International Journal of Modern Physics B, 2002, 16,4255-4257
    
    [64] L. Zou, L. Wang, J. Y. Huang, B. B. Zhao, and Z. Z. Ye, Structural and photo- luminesenct properties of Zn_(1-x)Mg_xO thin film on silicon, 物理学报, 2003, 52, 935-938
    
    [65] Y. Z. Zhang, J. H. He, Z. Z. Ye, L. Zou, J. Y. Huang, L. P. Zhu, and B. H. Zhao, Structural and photoluminescence properties of Zn_(0.8)Mg_(0.2)O thin films grown on Si substrate by pulsed laser deposition, Thin Solid Film, 2004, 458, 161-164
    
    [66] J. T. Cheung, G. Niizawa, J. Moyle, N. P. Ong, B. M. Paine and T. Jr. Vreeland, HgTe and CdTe epitaxial layers and HgTe-CdTe superlattices grown by laser molecular beam epitaxy, J. Vac. Sci. Technol. A 1986, 4, 2086-2089
    
    [67] H. Sankur and J. T. Cheung, Highly oriented ZnO films grown by laser evaporation, J. Vac. Sci. Technol. A 1983, 1, 1806-1809
    
    [68] D. C. Reynolds, D. C. Look and B. Jogai, Optically pumped ultraviolet lasing from ZnO, Solid State Commun. 1996, 99, 873-876
    
    [69] P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa 23rd Int. Conf, on the Physics of Semiconductors ed M Scheffler and R Zimmermann (Singapore: World Scientific) 1996 p1453
    
    [70] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto, Optically pumped lasing of ZnO. at room temperature, Appl. Phys. Lett. 1997, 70, 2230-2232
    
    [71] Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z. K. Tang, P. Yu and G. K. L. Wong, Growth of ZnO Thin Film by Laser MBE: Lasing of Exciton at Room Temperature, Phys. Status Solidi B 1997, 202, 669-672
    
    [72] R. K. Singh, and J. Narayan, Pulsed-laser evaporation technique for deposition of thin films: Physics and theoretical model, Phys. Rev. B 1990,41, 8843-8848
    
    [73] X. Y. Chen, and Z. G. Liu, Interaction between laser beam and target in pulsed laser deposition: laser fluence and ambient gas effects, Appl. Phys. A 1999, 69, 523-526
    
    [74] Y. Zhao, Y. J. Jiang, Y. Fang, The influence of substrate temperature on ZnO thin films prepared by PLD technique, J. Crys. Growth 2007, 307, 278-282
    
    [75] X. W. Sun, and H. S. Kwok, Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition, J. Appl. Phys. 1999, 86, 408-410
    
    [76] 顾培夫,《薄膜技术》,浙江大学出版社,1990年,第一版
    
    [77] J. W. Shin, J. Y. Lee, T. W. Kim, Y. S. No, W. J. Cho, and W. K. Choi, Growth mechanisms of thin-film columnar structures in zinc oxide on p-type silicon substrates, Appl. Phys. Lett. 2006, 88, 091911
    
    [78] S. Choopun, R. D. Vispute, W. Noch, A. Balsamo, R. P. Sharma, T. Venkatesan, A. Iliadis, and D.C. Look, Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire, Appl. Phys. Lett. 1999, 75, 3947-3949
    
    [79] A. Klini, A. Manousaki, D. Anglos, and C. Fotakis, Growth of ZnO thin films by ultraviolet pulsed-laser ablation: Study of plume dynamics, J. Appl. Phys. 2005, 98, 123301
    
    [80] A. Tsukazaki, A. Ohtomo, S. Yoshida, M. Kawasaki, C. H. Chia, T. Makino, Y. Segawa, T. Koida, S. F. Chichibu, and H. Koinuma, Layer-by-layer growth of high-optical-quality ZnO film on atomically smooth and lattice relaxed ZnO buffer layer, Appl. Phys. Lett. 2003, 83, 2784
    
    [81] A. Sasaki, W. Hara, A. Matsuda, N. Tateda, S. Otaka, S. Akiba, K. Saito, T. Yodo, and M.Yoshimoto, Buffer-enhanced room-temperature growth and characterization of epitaxial ZnO thin films, Appl. Phys. Lett. 2005, 86, 231911
    
    [82] E. M. Kaidashev, M. Lorenz, H. V. Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, High electron mobility of epitaxial ZnO thin films on c-plane sapphire grown by multistep pulsed-laser deposition, Appl. Phys. Lett. 2003, 82, 3901-3903
    
    [83] W. Z. Xu, Z. Z. Ye, L. Jiang, Y. J. Zeng, L. P. Zhu, and B. H. Zhao, Low-temperature MOVPE growth of ZnO thin films by using a buffer layer, Appl. Surf. Sci. 2006, 252, 5926-5929
    
    [84] M. Chen, Z. L. Pei, X. Wang, C. Sun, L. S. Wen, Structural, electrical, and optical properties of transparent conductive oxide ZnO:Al films prepared by dc magnetron reactive sputtering, J. Vac. Sci. Technol.A 2001, 19, 963-967
    
    [85] J. G. Lu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, L. Wang, J. Yuan, B. H. Zhao,Q. L. Liang, Structural, optical, and electrical properties of (Zn, Al)O films over a wide range of compositions, J. Appl. Phys. 2006, 100, 073714
    
    [86] J. H. Kang, Y. R. Park, K. J. Kim, Spectroscopic ellipsometry study of Zn_(1-x)Mg_xO thin films deposited on Al_2O_3(0001), Solid State Commun. 2000, 115, 127-130
    
    [87] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, Appl. Phys. Lett. 1998, 72, 2466-2468
    
    [88] S. H. Bae, S. Y. Lee, B. J. Jin, S. Im, Pulsed laser deposition of ZnO thin films for applications of light emission, Appl. Surf. Sci. 2000, 154-155,458-461
    
    [89] J. H. Kim, B. D. Ahn, C. H. Lee, K. A. Jeon, H. S. Kang, S. Y. Lee, Effect of rapid thermal annealing on electrical and optical properties of Ga doped ZnO thin films prepared at room temperature, J.Appl. Phys. 2006, 100, 113515
    
    
    [90] H. Tanaka, K. Ihara, T. Miyata, H. Sato, T. Minami, Low resistivity polycrystalline ZnO:Al thin films prepared by pulsed laser deposition, J. Vac. Sci. Technol. A 2004, 22, 1757-1760
    
    [91] Q. B. Ma, Z. Z. Ye, H. P. He, L. P. Zhu, J. R. Wang, B. H. Zhao, Substrate temperature dependence of the properties of Ga- doped ZnO films deposited by DC reactive magnetron sputtering, Vacuum 2007, 82, 9-12
    
    [92] D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong, H. Yang, Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire, Appl. Phys. Lett. 2003, 83, 677-679
    
    [93] F. K. Shan, G. X. Liu, W. J. Lee, B. C. Shin, The role of oxygen vacancies in epitaxial-deposited ZnO thin films, J. Appl. Phys. 2007, 101, 053106
    
    [94] E. Burstein, Phys. Rev. Lett. 1954, 93, 632
    
    [95] T. S. Moss, Proc. Phys. Soc. Lond. Ser. B 1954, 67, 775
    
    [96] H. D. Sun, T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Biexciton emission from ZnO/Zn_(0.74)Mg_(0.26)O multiquantum wells, Appl. Phys. Lett. 2001, 78, 3385
    [97] C. H. Chia, T. Makino, K. Tamura, and Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Confinement-enhanced biexciton binding energy in ZnO/ZnMgO multiple quantum wells, Appl. Phys. Lett. 2003, 82, 1848-1850
    
    [98] T. Makino, Y. Segawa, A. Tsukazaki, A. Ohtomo, and M. Kawasaki, Photoexcitation screening of the built-in electric field in ZnO single quantum wells, Appl. Phys. Lett. 2008, 93, 121907
    
    [99] T. Makino, Y. Segawa, and M. Kawasaki, Analytical study on exciton-longitudinal-optical- phonon coupling and comparison with experiment for ZnO quantum wells, J. Appl. Phys. 2005, 97, 106111
    
    [100] H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Phonon replicas in ZnO/ZnMgO multiquantum wells, J. Appl. Phys. 2002, 91, 6457-6460
    
    [101] B. P. Zhang, N. T. Binh, K. Wakatsuki, C. Y. Liu, Y. Segawa, and N. Usami, Growth of ZnO/ MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect, Appl. Phys. Lett. 2005, 86, 032105
    
    [102] B. P. Zhang, B. L. Liu, J. Z. Yu, Q. M. Wang, C. Y. Liu and Y. C. Liu, Y. Segawa, Photoluminescence and built-in electric field in ZnO/Mg_(0.1)Zn_(0.9)O quantum Wells, Appl. Phys. Lett. 2007, 90, 132103
    
    [103] J. Zhu, A. Y. Kuznetsov, M. S. Han, Y. S. Park, H. K. Ahn, J. W. Ju, and I. H. Lee, Structural and optical properties of ZnO/Mg_(0.1)Zn_(0.9)O multiple quantum wells grown on ZnO substrates, Appl. Phys. Lett. 2007, 90, 211909
    
    [104] J. M. Chauveau, M. Laügt, P. Vennegues, M. Teisseirel, B. Lo, C. Departs, C. Morhain, and B. Vinter, Non-polar a-plane ZnMgO/ZnO quantum wells grown by molecular beam epitaxy, Semicond. Sci. Technol. 2008, 23, 035005
    
    [105] T. Bretagnona, P. Lefebvrea, P. Valvina, B. Gila, C. Morhainb, and X. Tang, Time resolved photoluminescence study of ZnO/(Zn,Mg)O quantum wells, J. Crystal Growth 2006, 287, 12-15
    
    [106] A. Bakin, A. El-Shaer, A. C. Mofor, M. Al-Suleiman, E. Schlenker, and A. Waag, ZnMgO-ZnO quantum wells embedded in ZnO nanopillars: Towards realisation of nano-LEDs, phys. stat. sol. (c) 2007,4,158-160
    
    [107] J. Y. Bae, J. Yoo, and G. C. Yi, Fabrication and photoluminescent characteristics of ZnO/ Mg_(0.2)Zn_(0.8)O coaxial nanorod single quantum well structures, Appl. Phys. Lett. 2006, 89, 173116
    
    [108] C. Czekalla, J. Guinard, C. Hanisch, B. Q. Cao, E. M. Kaidashev, N. Boukos, A. Travlos, J. Renard, B. Gayral, D. L. S. Dang, M. Lorenz, and M. Grundmann, Spatial fluctuations of optical emission from single ZnO/MgZnO nanowire quantum wells, Nanotechnology 2008, 19, 115202
    
    [109] T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G. C. Yi, Nanophotonic Switch using ZnO nanorod double-quantum-well structures, Appl. Phys. Lett. 2007, 90, 223110
    
    [110] F. Schulze, A. Dadgar, J. Blasing, A. Diez, and A. Krost, Metalorganic vapor phrase epitaxy grown InGaN/GaN light-emitting diodes on Si (001) substrate, 2006, 88, 121114
    [111] G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki, Exciton binding energy in quantum wells, Phys. Rev. B 1982, 26, 1974-1977
    
    [112] C. F. Li, Y. S. Huang, L. Malikova and F. H. Pollak, Temperature dependence of the energies and broadening parameters of the interband excitonic transitions in wurtzite GaN, Phys. Rev. B 1997, 55, 9251-9254
    
    [113] L. J. Wang and N. C. Giles, Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy, J. Appl. Phys. 2003, 94, 973-977
    
    [114] C. Klingshirn, Semiconductor Optics, 3rd ed. (Springer, Heidelberg, 2007)
    
    [115] H. Haug, Landolt-Bornstein, New Series, Group III, Vol. 34, Pt. C1, edited by C. Klingshirn (Springer, Heidelberg, 2001), p. 6
    
    [116] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda and Y. Segawa, Structure and optical properties of ZnO/Mg_(0.2)Zn_(0.8)O superlattices, Appl. Phys. Lett. 1999, 75, 980-982
    
    [117] T. Makino, C. H. Chia, Nguen T. Tuan, H. D. Sun, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Room-temperature luminescence of excitons in ZnO/(Mg, Zn)O multiple quantum wells on lattice-matched substrates, Appl. Phys. Lett. 2000, 77, 975-977
    
    [118] A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, and Y. Segawa, Structure and optical properties of ZnO/Mg_(0.2)Zn_(0.8)O superlattices, Appl. Phys. Lett. 1999, 75, 980
    
    [119] C. Morhain, T. Bretagnon, P. Lefebvre, X. Tang, P. Valvin, T. Guillet, T. Taliercio, M. Teisseire-Doninelli, B. Vinter and Departs C, Internal electric field in wurtzite ZnO/Zn_(0.78)Mg_(0.22)O quantum wells, Phys. Rev. B 2005, 72, 241305
    
    [120] M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies and P. Gibart, Temperature quenching of photoluminescence intensities in undoped and doped GaN, J. Appl. Phys. 1999,86,3721-3724
    
    [121] J. Krustok, H. Collan and K. Hjelt, Does the low-temperature Arrhenius plot of the photoluminescence intensity in CdTe point towards an erroneous activation energy? J. Appl. Phys. 1997,81,1442
    
    [122] T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Temperature quenching of exciton luminescence intensity in ZnO/(Mg, Zn)O multiple quantum wells, J. Appl. Phys. 2003, 93, 5929-5934
    
    [123] H. P. He, Z. Z. Ye, F. Zhuge, Y. J. Zeng, L. P. Zhu, B. H. Zhao, J. Y. Huang, and Z. Chen, Carrier localization in codoped ZnO:N:Al films, Solid State Commun. 2006, 138, 542-545
    
    [124] I. T. Ferguson, T. S. Cheng, C. M. Sotomayor Torres, and R. Murray, Photoluminescence of molecular beam epitaxial grown Al_(0.48)In_(0.52)As, J. Vac. Sci. Technol. B 1994, 12, 1319-1323
    
    [125] X. Q. Gu, L. P. Zhu, Z. Z. Ye, H. P. He, Y. Z. Zhang, F. Huang, M. X. Qiu, Y. J. Zeng, F. Liu, and W. Jaeger, Room-temperature photoluminescence from ZnO/ZnMgO multiple quantum wells grown on Si(111) substrates, Appl. Phys. Lett. 2007, 91, 022103
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.