氧化锌基半导体材料的拉曼光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在凝聚态物理实验中,拉曼散射作为一种快速、有效、无损、无接触的检测手段,在研究分子和晶格内部的结构时扮演着重要的角色。本文通过对半导体材料的拉曼和发光光谱研究,对其中的声子、电子及其互作用过程等基本物理性质进行探索和分析。
     众所周知,国际能源紧缺问题日趋凸显,带动了半导体照明工程的发展。半导体照明的关键技术是开发新型蓝光至紫外波段的发光二级管(LEDs)器件。近年来氧化锌(ZnO)薄膜在短波长LED领域备受关注。然而,由于本征缺陷的自补偿作用和低的受主掺杂固溶度,p型ZnO的制备一般需要较高的受主掺杂浓度,从而制约了高空穴迁移率的获得,使得ZnO的p型掺杂瓶颈极大的限制了ZnO基LED器件的开发。因此对p型ZnO的深入研究成为解决p型掺杂的基础。
     本论文中,我们首先通过变温拉曼光谱对超声喷雾热解(USP)方法生长在本征Si衬底上的不同浓度N-In共掺杂p型ZnO薄膜进行研究,温度在83-578 K范围内变化。不同浓度下样品中声子极化激元与纵向光学(Longitudinal Optical,LO)声子耦合(CPPM)模频率和线宽随温度的变化可以通过一个详细的理论模型解释。我们发现随着温度增加,频率的红移和峰宽的展宽主要是由于非谐效应造成的。通过理论分析,我们给出了随着温度变化,CPPM模的衰变路径。此外我们注意到非谐常数随着浓度的增加而增加,而声子寿命随着非谐效应的增强而减小。另外在声子耦合弛豫过程中,四声子过程相对于三声子过程发生的概率,随着浓度的增加而增加,这些可以归因于在N-In共掺杂p型ZnO中局域声子态密度(LPDOS)的改变。
     随着紫外光探测器在微电子、环境保护、火灾预警、生物、医学研究、天文学以及军事国防等领域的应用日益增长,新型高性能低成本紫外光探测器的研究也越来越受到人们的关注。与GaN基材料相比,由于生长温度低、容易制备、成本低、对环境无害、原料丰富等优点,因此开展ZnO基日盲型紫外探测器的研制将具有更广阔的前景。但是,与硅(Si)等老一代半导体材料的成熟研究和应用不同的是,ZnO基材料应用于日盲型紫外探测器的研制还处在起步或摸索阶段。本文中我们通过Mg替换Zn生成六方纤锌矿ZnMgO,达到对ZnO基薄膜能带的调控,实现了纯六方纤锌矿ZnO薄膜禁带宽度在3.26-3.99 eV范围连续可调,并对其拉曼光谱进行了研究。
     论文中我们详细讨论了不同组分纤锌矿Zn1-xMgxO(x≤0.323)中A1(LO)和E1(LO)声子模随温度(从83-578 K)的变化情况。通过同样的变温理论模型,我们分别研究了ZnMgO中A1(LO)和E1(LO)声子模频率和峰宽随温度的变化,详细的解释了温度和Mg组分对声子模频率和峰宽的影响。研究结果证明当ZnMgO基设备处于运作过程中时,显微拉曼光谱可以在亚毫米的空间分辨率范围内对其局域温度进行监控。
     作为新一代半导体器件设备的候选者,镍化硅(NiSi)在过去几十年中已经引起了人们广泛的重视。尽管NiSi有很多优势,然而这里仍然还有许多问题需要克服。一方面,高温退火温度下NiSi向高电阻率NiSi2相的凝聚和转变严重的限制了硅化物的形成过程。Mangelinck等[26]的关于在NiSi中加入5%的铂(Pt)可有效提高它的稳定性的杰出工作为在NiSi中掺入第三种元素的研究提供了坚实的基础。通过X射线测量和经典核理论计算[26,27],至目前为止,掺入昂贵的Pt、钯(Pd)和铑(Rh)似乎可以完美的将热稳定性达到900 oC以上。最近一些人建议在NiSi中掺入廉价的钼(Mo)、锆(Zr)、和钴(Co),从而使NiSi2相的形成延缓。尽管这些元素和那些昂贵的元素相比不是很有效,它们只是将温度延缓到了800 oC。由于在NiSi中掺入什么元素还没有明确的定论,因此工程师们仍然掺入昂贵的元素来满足微电子器件缩小尺寸的要求。Pd是很好的掺入元素,因为它的价格比Pt要便宜四倍,性质却基本相同。另一方面,微电子产品热退化也是当今大家关心的问题,对于硅化物表面温度,特别是在它运转中表面温度的精确了解是实现设备可靠性的关键因素。
     因此我们采用拉曼光谱对不同退火温度下的NiSi和NiPdSi薄膜进行详细研究。证明了拉曼光谱对于确定三元化合物NiPdSi的相变温度和研究其内部的声子动力学是非常适用的。此外,研究结果也证实了Pd的掺入对于将NiSi2相的形成延缓到900 oC是非常有效的,而这一结果恰好为硅化物形成过程提供了重要的拓展。进一步研究我们给出了非谐效应在拉曼光谱随温度变化的过程中起主导作用,并且与纯的NiSi相较,发现在NiSi中由于Pd的掺入导致声子频率随温度的频移减小大约4 cm-1,这对于NiPdSi运用于微电子器件方面提供了很好的证据。
     共振拉曼散射(RRS)与其它光学测量方法相比有着它的优势,它能够提供晶格动力学和材料电子结构的信息。这种方法对于合金半导体是非常重要的,合金引入的无序影响了晶格振动和电子态之间的相互作用,在禁带中引入了局域电子态,在共振拉曼散射中表现出尖锐的共振结构。最优化半导体发光二极管中关键的因素是对增益和同步辐射起作用的显微机制,而这一机制是可以被强烈的局域电子效应适当的检测到。因此在研究半导体的光电性质时,共振拉曼散射已经被证明是一个重要的工具,并且已经被广泛的应用在合金半导体的研究中。
     鉴于上述情况,实验中我们通过改变Mg组分和ZnMgO样品的温度,从而改变样品的带隙来获取共振拉曼光谱,采用这种方便有效的方法我们全面观察纤锌矿Zn1-xMgxO (x≤0.323)薄膜中LO声子模的共振拉曼行为。实验结果显示在纤锌矿Zn1-xMgxO中LO声子不但呈现单模行为,且随着组分的增加频率发生蓝移、峰形展宽。我们解释了LO声子模的行为,还得到了Zn1-xMgxO中Zn-O之间键的作用力。诉诸电子带到带跃迁的Loudon’s模型和Balkanski等对局域激子提出的简单原子模型,我们得到合金中LO声子的出射共振行为是由于局域激子残余的外在的弗罗里克相互作用引起的。此外,我们发现局域激子对ZnMgO薄膜中LO声子的出射共振起主要作用。
     最后我们对p型ZnO薄膜变温发光光谱进行分析,结合对N-In共掺杂和N掺杂p型ZnO薄膜的光致发光(PL)性质分析,我们发现N-In共掺杂技术导致了受主束缚能的减小和施主束缚能的增大,而且与N掺杂ZnO相比,N-In共掺杂ZnO中的受主能级得到了进一步的展宽。同时由于In元素的引入,N-In共掺杂ZnO的自由电子浓度也略高于N掺杂ZnO。此外我们还揭示了N-In共掺杂和N掺杂p型ZnO薄膜中不同的载流子复合过程,以及非掺杂ZnO薄膜中的深能级可见发光峰来源。
     建立在ZnO p-n同质结的LEDs已经获得了成功,但是低浓度和迁移率的p型层的难获得直接影响了其发光效率。本文中我们采用PLD法在Si(111)衬底上生长了n-ZnO/MgO/TiN/n+-Si的LED,并对其结构和光学性质进行研究。为了提高晶体的质量减少深能级的散射,低温生长的ZnO缓冲层被用来将ZnO外延层生长在MgO/TiN/Si(111)衬底上。与此同时,我们还全面系统的比较了有低温缓冲层和无低温缓冲层的高质量晶体外延ZnO薄膜的生长过程以及发光性质。结果发现在PL光谱中并没有明显的深能级散射出现,而对于EL光谱的光强,由于使用了低温ZnO缓冲层导致了外延ZnO薄膜质量提高,从而被明显增强。本论文紧紧结合了凝聚态光谱的研究方法和半导体材料的物理特性这两点,一方面详细地阐述了如何将现代凝聚态光谱应用到材料的研究中去,另一方面也分析了所得到的半导体材料物理特性,这些基本的性质对今后人们的研究提供了很好的参考依据。从研究的方法来看,本论文通篇贯彻了理论结合实验的宗旨,选择最合适的模型和理论来拟合和分析实验数据,再根据理论分析需求来设计更好的光谱实验,力求实验数据更可靠,理论模型更贴切。所有的这些成果都在SCI收录论文中进行了报道。
     以上的研究得到了国家自然科学基金(10674094和10734020)和教育部“长江学者和创新团队发展计划”创新团队计划(IRT0524)的资助。
As a fast, effective, nondestructive and contactless technique, Raman Scattering has been proved to be playing the key role in diagnosing the internal structure of molecules and crystals of condensed matter physics. We have studied the basic physical properties such as the phonon, electron, and the interaction between them based on the Raman and luminescence spectroscopy.
     It is well known that semiconductor lighting has obtained much attention due to the international energy shortage issue. The key technique of semiconductors lighting is to develop novel blue to UV light emitting diodes (LEDs). Recently, ZnO is promising in blue and UV LED. However, due to the self-compensation effect from native defects and the low solubility of the acceptor dopants in ZnO, high acceptor doping seemly becomes necessary to obtain p-ZnO, which will result in the low hole mobility. So its application is always limited by the p-type bottleneck. A further understanding of p-type ZnO thin films is essential for overcoming the p-type difficulty.
     In this dissertation, we have presented a comprehensive investigation of temperature dependence of Raman scattering of the CPPM in N-In codoped p-type ZnO films with different hole densities grown on Si substrates by USP in the temperature range from 83 to 578 K. The frequencies and linewiths of the CPPM can be well described by a theoretical model. The downshift of frequencies and broadening of linewidth are mainly due to the anharmonic effect. Through detailed theoretical modeling, we have determined the decay process of the CPPM. The anharmonic constants increase with hole density and the lifetime reduces with increasing anharmonicity. Furthermore, it is found that the contribution of four-phonon process increases while that of three-phonon precess reduces with increasing hole density, which can be attributed to the increase of LPDOS.
     On the other hand, new type high performance and low cost UV detector is under intensive investigation for its extensive application in many area such as micro-electronics, environmental monitoring, fire warming, biology, space research and missile warning systems. Compared with GaN-based materials, ZnO-based is more suitable for the fabrication of a UV detector, due to low-growth temperature, simpler crystal-growth technology, low-growth cost, absence of toxicity, and abundance in nature, etc. However, unlike the mature Si/Ge materials and compounds, the ZnO-based materials are still in their initial stages, and many physical properties or parameters of them remain ambiguous. In this dissertation, we have modulated the bandgap of ZnO films by substituting Mg for Zn to grow ZnMgO, and grown wurtzite structure of ZnMgO thin films with bandgap from 3.26 to 3.99 eV. Furthermore, we have also studied Raman Scattering of ZnMgO.
     We have presented a detailed micro-Raman investigation of temperature dependence Raman spectra of A1(LO) and E1(LO) modes in hexagonal ZnMgO films with different Mg compositions (x≤0.323) in the temperature range from 83 to 578 K. In combination with the same theoretical modellings for the frequencies downshift and linewidths broadening, we have clearly illustrated the temperature effect on the phonon frequency and linewidth. The work demonstrates that the micro-Raman technique is very useful in monitoring the local temperature during the ZnMgO-based device operation with submicrometer spatial resolution.
     As a potential candidate for future generation of semiconductor device, Nickel silicide (NiSi) has attracted much attention in the past decade. Depite of well-orcognized advantange of NiSi, there are still some challenges to overcome. On the one hand, the agglomeration and compatibility with germano silicides and transformation of NiSi to high-resistivity NiSi2 phase at high annealing temperatures seriously limit the silicidation process window. The prominent work of Mangelinck et al. that the addition of only 5% of Pt significantly enhances the thermal stability of NiSi has emerged a fertile ground for investigation of the third element addition to NiSi films. By X-ray diffraction measurements and calucation in the frames of the classical nucleation theory, the addition of high-cost Pt, Pd, and Rh seems to suit perfectly the aims of the stability improvement up to 900 oC up to now. Very recently, a number of reports of have also suggested the addition of cheaper metals such as Mo, Zr, and Co to NiSi, showing the retardation of NiSi2 formation, although not as effective as the former alloys, only up to the temperature of 800 oC. Since there is no unambiguous decision on which additive to use, engineers still have to employ the“expensive”ones to satisfy the shrinking dimension demand of microelectronics. Pd is preferable as it costs four times less than that of Pt while it exhibirs comparative properties. On the other hand, thermal degradation issues of microelectronic materials are a dominating concer today and precise knowledge of the actual surface temperature of silicides especially during device operation is critical for device reliability.
     In this dissertation, we report on a systematic Raman study on NiPdSi film and a solid comparison with pure NiSi film under different annealing temperatures. We have demonstrated that this technique is perfectly applicable for both the identification of phase transition temperature and phonon dynamics in NiPdSi. It is verified that the addition of Pd is efficient in retardation in the formation of NiSi2 up to 900°C, which provides a significant extension of the silicide process window. We have further shown that the anharmonic effects of phonon decay dominate the Raman frequency downshift with increasing temperature, and as compared to the pure NiSi case, the presence of Pd in NiSi can reduce the Raman frequency downshift for about 4 cm?1, giving an additional evidence of a favorable use of NiPdSi for microelectronic applications.
     RRS has the advantage compared to other optical measurements, since it provides information about both the lattice dynamics and electronic structure of materials. This technique is especially important for alloy semiconductors, where the alloy-induced disorder perturbs the interaction between the lattice vibrations and electronic states, and introduces localized excitons in the forbidden gap shown as sharp resonance features in RRS. A key issue in optimizing semiconductor diode lasers concerns the microscopic mechanism responsible for gain and stimulated emission, which can be appropriately examined by the strong localized excitonic effects. Therefore, RRS has been demonstrated to be an important tool in studying the optoelectronic properties of alloy semiconductors, and widly used in it.
     We have presented an easy and effective way to comparatively investigate the RRS of LO phonons in hexagonal Zn1-xMgxO (x≤0.323) thin films. The resonance effect is achieved by changing the Mg composition and sample temperature to tune the ZnMgO bandgap, rather than varying the photon energy of the excitation laser. The experimental result show that the dependence of LO phonons in Zn1-xMgxO on the Mg composition exhibits one-mode vibration and the buleshift. We have explained the experimental result and known the force in Zn-O bonds. By the detailed theoretical fitting on Loudon’s model for the band-to-band transition and a simple atomistic model proposed by Balkanski et al. for the excitonic localization, we demonstrate a pronounced outgoing resonance behavior for the LO phonons. The mechanism of the outgoing resonance can be mainly attributed to the extrinsic Fr?hlich interaction mediated via a localized exciton. We have further found that the localized exciton dominates the outgoing LO phonon resonances in ZnMgO.
     Finally, through the investigation of temperature dependence of PL spectra, we have clarified that the N-In codoping, compared with the N-doping, leads to the decrement of acceptor binding energy and increment of donor binding energy in ZnO, and also broadens the acceptor level. This result is consistent with the observation of more free hole concentration in the mobility spectra for N-In codoped ZnO. Meanwhile, the introducing of In dopants results in the more free electron concentration in N-In codoped ZnO. In addition we have revealed the different carrier recombination processes in N-In codoped and N-doped p-type ZnO thin films, and confirmed the origin of the deep-level visible emission in undoped ZnO.
     LEDs based on ZnO p-n homojunciton have been achieved. However, low concentration and mobility of holes in p-type layers greatly limit their light-emitting efficiency. In this dissertation, we will report systematical studies on the structural and optical properties of n-ZnO/MgO/TiN/n+-Si, which was entirely fabricated on Si(111) by PLD. In order to improve the crystal quality and reduce deep-level (DL)defects in the ZnO epi-layer, a low temperature (LT) ZnO buffer layer was employed in the growth process of ZnO epitaxial on the MgO/TiN/Si(111)substrate. Meanwhile we have comparatively investigated the crystal quality and luminescence performance of epitaxial ZnO thin film with or without a LT ZnO buffer layer. It is found that no significant DLEs appear in PL spectroscopy, and the EL output light intensity is enhanced obviously by improving the ZnO crystal quality via employing a LT ZnO buffer layer.
     This dissertation tightly combines the application of investigation method on semiconductor and the analysis of obtained physical characteristics of these semiconductor materials. On the one hand, we carefully explore how to employ the modern spectroscopy methods to study semiconductor materials; and on the other hand, the obtained physical properties of semiconductors are very important for further studies or applications, which have been deeply analyzed in this dissertation. From the viewpoint of the investigation methodology, we have well combined the theoretical analysis together with the experimental results, that is, the most suitable theories and models are selected to simulate the experimental data, while the experiments are designed based on the requirement and guidance of the theories. Therefore, the experiment data are more reliable and the theoretical analysis is more appropriate. All these achievements have been published in SCI journals.
     This work is supported in part by the Natural Science Foundation of China under Contract Nos. 10674094 and 10734020, and the National minister of Education Program of IRT0524.
引文
1. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, Prog. Mater. Sci., 50, 293 (2005).
    2.ü. ?zgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin, S. J. Cho, H. Morkoc, J. Appl. Phys., 98, 041301 (2005).
    3. C. H. Chia, T. Makino, K. Tamura, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, Appl. Phys.Lett., 82, 1848 (2003).
    4. R. F. Service, Science, 276, 895 (1997).
    5. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater., 4, 42 (2005).
    6. S. J. Jiao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. Yao, J. Y. Zhang, B. H. Li, D. X. Zhao, X. W. Fan, and Z. K. Tang, Appl. Phys. Lett., 88, 031911 (2006).
    7. D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett., 82, 2552 (1999).
    8. S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, Jpn. J. Appl. Phys. Part 2, 36, L1078 (1997).
    9. B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, and R. A. Rabadanov, Thin Solid Films, 260, 19 (1995).
    10. B. Gil and A. V. Kavokin, Appl. Phys. Lett., 81, 748 (2002).
    11. C. H. Park, S. B. Zhang, and Su-Huai Wei, Phys. Rev. B, 66, 073202 (2002).
    12. C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000).
    13. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett., 81, 1830 (2002).
    14. J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, and X. W. Fan, J. Appl. Phys., 102, 043522 (2007).
    15. F. X. Xiu, Z. Yang, L. J. Mandalapu, J. L. Liu, and W. P. Beyermann, Appl. Phys. Lett., 88, 052106 (2006).
    16. D. C. Look, G. M. Renlund, R. H. Burgener II, and J. R. Sizelove, Appl. Phys. Lett., 85, 5269 (2004).
    17. Z. Z. Ye, F. Zhu-Ge, J. G. Lu, Z. H. Zhang, L. P. Zhu, B. H. Zhao, and J. Y. Huang, J. Crystal Growth, 265, 127 (2004).
    18. M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys., 38, L1205 (1999).
    19. C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, and Y. J. Lu, J. Appl. Phys., 85, 2595 (1999).
    20. J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, Appl. Phys. Lett., 84, 541 (2004).
    21. J. C. Lin, , Y. K. Su, S. J. Chang, W. H. Lan, K. C. Huang, W. R. Chen, C. Y. Huang, W. C. Lai, W. J. Lin, and Y. C. Cheng, Appl. Phys. Lett., 91, 73502 (2007).
    22. Y. D. Jhou,., S. J. Chang, Y. K. Su, Y. Y. Lee, C. H. Liu, and H. C. Lee, Appl. Phys. Lett., 91, 3506 (2007).
    23. J. B. Limb, , D. Yoo, J. H. Ryou, W. Lee, S. C. Shen, R. D. Dupuis, M. L. Reed, C. J. Collins, M. Wraback, D. Hanser, E. Preble, N. M. Williams, and K. Evans, Appl. Phys. Lett., 89, 11112 (2006).
    24. O. Katz, , V. Garber, B. Meyler, G. Bahir, and J. Salzman, Appl. Phys. Lett., 80, 347 (2002).
    25. G. M. Smith, J. M. Redwing, R. P. Vaudo, E. M. Ross, J. S. Flynn, and V. M. Phanse, Appl. Phys. Lett., 75, 25 (1999).
    1. D. L. Mills, Nonlinear Optics (Springer, Berlin, Heidelberg 1991).
    2.玻恩,黄昆,晶格动力学理论,北京大学出版社,1989.
    3.沈学础,半导体光谱与光学性质(第二版),科学出版社,2002.
    4.黄昆,韩汝琦,固体物理学,高等教育出版社,1998.
    5.刘恩科,朱秉升,罗晋生,半导体物理学(第四版),北京,国防工业出版社, 1994.
    1. Y. F. Chen, D. M. Bagnall, Z. Zhu, T. Sekiuchi, K. Park, K. Hiraga, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, J. Cryst. Growth, 181, 165 (1997).
    2. T. Ohgaki, N. Ohashi, H. Kakemoto, S. Wada, Y. Adachi, H. Haneda, and T. Tsurumi, J. Appl. Phys., 93, 1961 (2003).
    3. Y. Chen, H. J. Ko, S. K. Hong, and T. Yao, Appl. Phys. Lett., 76, 559 (2000).
    4. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater., 4, 42 (2005).
    5. V. Craciun, J. Elders, J. G. E. Gardeniers, and I. W. Boyd, Appl. Phys. Lett., 65, 2963 (1994).
    6. A. Fouchet, W. Prellier, B. Mercey, L. Méchin, V. N. Kulkarni, and T. Venkatesan, J. Appl. Phys., 96, 3228 (2004).
    7. A. Hachigo, H. Nakahata, K. Higaki, S. Fujii, and S. Shikata, Appl. Phys. Lett., 65, 2556 (1994).
    8. R. J. Lad, P. D. Funkenbusch, and C. R. Aita, J. Vac. Sci. Technol., 17, 808 (1980).
    9. S. Jeong, B. Kim, and B. Lee, Appl. Phys. Lett., 82, 2625 (2003).
    10. F. T. J. Smith, Appl. Phys. Lett., 43, 1108 (1983).
    11. C. R. Gorla, N. W. Emanetoglu, S. Liang, W. E. Mayo, and Y. J. Lu, J. Appl. Phys., 85, 2595 (1999).
    12. A. Dadgar, N. Oleynik, D. Forster, S. Deiter, H. Witek, J. Bl?sing, F. Bertram, A. Krtschil, A. Diez, J. Christen, and A. Krost, J. Cryst. Growth, 267, 140 (2004).
    13. J. M. Bian, X. M. Li, X. D. Gao, W. D. Yu, and L. D. Chen, Appl. Phys. Lett., 84, 541 (2004).
    14. G. T. Du, W. F. Liu, J. M. Bian, L. Z. Hu, H. W. Liang, X. S. Wang, A. M. Liu, and T. P. Yang, Appl. Phys. Lett., 89, 052113 (2006).
    15. T. Y. Ma, S. H. Kim, H. Y. Moon, G. C. Park, Y. J. Kim, and K. W. Kim, Jpn. J. Appl. Phys. Part1, 35, 6208 (1996).
    16. M. N. Kamalasanan and S. Chandra, Thin Solid Films, 288, 112 (1996).
    17. Y. Zhang, B. X. Lin, X. K. Sun, and Z. X. Fu, Appl. Phys. Lett., 86, 131910 (2005).
    18. Y. G. Cao, L. Miao, S. Tanemura, M. Tanemura, Y. Kuno, and Y. Hayashi, Appl. Phys. Lett., 88, 251116 (2006).
    19.ü. Ozgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys., 98, 041301 (2005).
    20. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, Prog. Mater. Sci., 50, 293 (2005).
    21. W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, Phys. Rev. B, 65, 075207 (2002).
    22. C. Klingshirn, Phys. Stat. Sol. (b), 244, 3027 (2007).
    23. A. Mang, K. Reimann, and St. Rübenacke, Solid State Commun., 94, 251 (1995).
    24. Y. Sun, P. Xu, C. Shi, F. Xu, H. Pan, and E. Lu, Journal of Electron Spectroscopy and Related Phenomena, 114-116, 1123 (2001).
    25. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, Phys. Rev. B, 61, 15019 (2000).
    26. B. J. Lokhande, P. S. Patil, and M. D. Uplane, Physica B, 302-303, 59 (2001).
    27. S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, Jpn. J. Appl. Phys. Part 2, 36, L1078 (1997).
    28. B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedo, and R. A. Rabadanov, Thin Solid Films, 260, 19 (1995).
    29. B. Gil and A. V. Kavokin, Appl. Phys. Lett., 81, 748 (2002).
    30. M. D. L. Olvera, A. Maldonado, R. Asomoza, O. Solorza, and D. R. Acosta, Thin Solid Films, 394, 241 (2001).
    31. T. Minami, H. Sato, H. Nanto, and S. Takata, Jpn. J. Appl. Phys., 25, L776 (1986).
    32. B. M. Ataev, A. M. Bagamadova, V. V. Mamedov, A. K. Omaev, and M. R. Rabadanov, J. Crystal Growth, 198-199, 1222 (1999).
    33. T. Yamamoto and H. Katayama-Yoshida, Physica B, 302-303, 155 (2001).
    34. Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. L. Chen, D. Y. Li, L. P. Zhu, B. H. Zhao, and Y. L. Hu, J. Crystal Growth, 283, 180 (2005).
    35. O. F. Schirmer, J. Phys. Chem. Solids, 29, 1407 (1968).
    36. A. Valentini, F. Quaranta, M. Rossi, and G. Battaglin, J. Vac. Sci. Technol. A, 9, 286(1991).
    37. Y. Kanai, Jpn. J. Appl. Phys. Part 1, 30, 703 (1991).
    38. H. S. Kang, B. D. Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, and S. Y. Lee, Appl. Phys. Lett., 88, 202108 (2006).
    39. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett., 81, 1830 (2002).
    40. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys. Part 2, 36, L1453 (1997).
    41. F. X. Xiu, Z. Yang, L. J. Mandalapu, J. L. Liu, and W. P. Beyermann, Appl. Phys. Lett., 88, 052106 (2006).
    42. D. C. Look, G. M. Renlund, R. H. Burgener II, and J. R. Sizelove, Appl. Phys. Lett., 85, 5269 (2004).
    43. O. Lopatiuk-Tirpak, W. V. Schoenfeld, L. Chernyak, F. X. Xiu, J. L. Liu, S. Jang, F. Ren, S. J. Pearton, A. Osinsky, and P. Chow, Appl. Phys. Lett., 88, 202110 (2006).
    44. G. Xiong, J. Wilkinson, B. Mischuck, S. Tüzemen, K. B. Ucer, and R. T. Williams, Appl. Phys. Lett., 80, 1195 (2002).
    45. Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, and D. L. Liu, J. Appl. Phys., 95, 6268 (2004).
    46. Z. Z. Ye, F. Zhu-Ge, J. G. Lu, Z. H. Zhang, L. P. Zhu, B. H. Zhao, and J. Y. Huang, J. Crystal Growth, 265, 127 (2004).
    47. M. Joseph, H. Tabata, and T. Kawai, Jpn. J. Appl. Phys., 38, L1205 (1999).
    48. S. T. Tan, X. W. Sun, Z. G. Yu, P. Wu, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett., 91, 072101 (2007).
    49. C. H. Park, S. B. Zhang, and S.-H. Wei, Phys. Rev. B, 66, 073202 (2002).
    50. D. B. Chrisey and G. K. Hubler. Plused laser deposition of thin films. New York, John Wiley, 1994.
    51. V. Cracium, J. Elsers, J. G. E. Gardeniers, and I. W. Boyd, Appl. Phys. Lett., 65, 2963 (1995).
    52. H. M. Christem, S. D. Silliman, and K. S. Harshavardhan, Appl. Surf. Sci., 189, 216 (2002).
    53.赵俊亮,李效民,边继明,张灿云,于伟东,高相东,“喷雾热解法生长N掺杂ZnO薄膜机理分析”,无机材料学报, 20, 959 (2005).
    54. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett., 72, 2466 (1998).
    55. L. A. Bendersky, I. Takeuchi, K. S. Chang, W. Yang, S. Hullavarad, R. D. Vispute, J. Appl. Phys., 98, 83526 (2005).
    56. S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, H. Shen, Appl. Phys. Lett., 80, 1529 (2002).
    57. F. Vaz, P. Cerqueira, L. Rebouta, S. M. C. Nascimento, E. Alves, Ph. Goudeau, J. P. Riviere, K. Pischow and J. de Rijk, Thin Solid Films, 447-448, 449 (2004).
    1. R. Tsu, J. G. Hemandez, J. Dochler, and S. R. Ovshinsky, Solid State Commun., 46, 79 (1984).
    2. S. Verprek, FA Sarrot, and Z. Iqbal, Phys. Rev. B, 36, 3344 (1987).
    3. J. W. Matthews and A. T. Blakelee, J. Cryst. Growth, 27, 181 (1974).
    4. C. Bundesmann, N. Ashkenov, M. Schubert, D. Spemann, T. Butz, E. M. Kaidashev, M. Lorenz, and M. Grundmann, Appl. Phys. Lett., 83, 1974 (2003).
    5.ü. ?zgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin, S. J. Cho, and H. Morkoc, J. Appl. Phys., 98, 041301 (2005).
    6. W. S. Li, Z. X. Shen, Z. C. Feng, and S. J. Chua, J. Appl. Phys., 87, 3332 (2000).
    7. A. Link, K. Bitzer, W. Limmer, R. Sauer, C. Kerchner, V. Schwegler, M. Kamp, D.G. Ebling, and K.W. Benz, J. Appl. Phys., 86, 6256 (1999).
    8. X. D. Pu, J. Chen, W. Z. Shen, H. Ogawa, and Q. X. Guo, J. Appl. Phys., 98, 033527 (2005).
    9. J. A. Wolk, J. W. Ager III, K. J. Duxstad, E. E. Haller, N. R. Taskar, D. R. Dorman, and D. J. Olego, Appl. Phys. Lett., 63, 2756 (1993).
    10. R. R. Reeber, J. Appl. Phys., 41, 5063 (1970).
    11. M. Kuball, J. M. Hayes, Y. Shi, J. H. Edgar, A. D. Prins, N. W. A. van Uden, and D. J. Dunstan, J. Crystal Growth, 231, 391 (2001).
    12. A. Sarua, M. Kuball, and J. E. van Nostrand, Appl. Phys. Lett., 81, 1426 (2002).
    13. T. Kozawa, T. Kachi, H. Kano, H. Nagase, N. Koide, and K. Manabe, J. Appl. Phys., 77, 4389 (1995).
    14. V. Yu. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina, A. S. Polkovnikov, A. N. Smirnov, M. A. Jacobson, and O. K. Semchinova, J. Appl. Phys., 82, 5097 (1997).
    15. M. R. Aouas, W. Sekkal, and A. Zaoui, Solid State Commun., 120, 413 (2001).
    16. B. B. Varga, Phys. Rev., 137, A1896 (1965).
    17. R. Fukasawa and S. Perkowitz, Phys. Rev. B, 50, 14119 (1994).
    18. A. Mooradian and G. B. Wright, Phys. Rev. Lett., 16, 999 (1966).
    19. B. H. Bairamov, A. Heinrich, G. Irmer, V. V. Toporov, and E. Ziegler, Phys. Stat. Sol. (b), 119, 227 (1983).
    20. H. Yugami, S. Nakashima, and A. Mitsuishi, J. Appl. Phys., 61, 354 (1987).
    21. R. Cuscó, J. Ibáňez, and L. Artús, Phys. Rev. B, 57, 12197 (1998).
    22. S. Katayama and K. Murase, J. Phys. Soc. Jpn., 42, 886 (1977).
    23. G. T. Du, Y. Ma, Y. T. Zhang, and T. P. Yang, Appl. Phys. Lett., 87, 213103 (2005).
    24. V. Srikant and D. R. Clarkea, J. Appl. Phys., 81, 6357 (1997).
    25. T. Inushima, T. Shiraishi, and V. Y. Davydov, Solid State Commun., 110, 491 (1999).
    26. S. Kim, B. S. Kang, F. Ren, Y. W. Heo, K. Ip, D. P. Norton, and S. J. Peartona, Appl. Phys. Lett., 84, 1904 (2004).
    27. T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev., 142, 570 (1966).
    28. F. Demangeot, J. Frandon, M. A. Renucci, N. Grandjean, B. Beaumont, J. Massies, and P. Gibart, Solid State Commun., 106, 491 (1998).
    29.沈学础,半导体光谱和光学性质(第二版),科学出版社, 2002.
    30. W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, Phys. Rev. B, 65, 075207 (2002).
    31. H. J. Lee and D. C. Look, J. Appl. Phys., 54, 4446 (1983).
    32. A. M. Ardila, O. Martínez, M. Avella, J. Jiménez, B. Gérard, J. Napierala, and E. Gil-Lafon, J. Appl. Phys., 91, 5045 (2002).
    33. H. Iwanaga, A. Kunishige, and S. Takeuchi, J. Mater. Sci., 35, 2451 (2000).
    34. J. Serrano, A. H. Romero, F. J. Manjón, R. lauck, M. Cardona, and A. Rubio, Phys. Rev. B 69, 094306 (2004).
    35. D. Olego and M. Cardona, Phys. Rev. B, 24, 7217 (1981).
    36. Th. Gruber, G. M. Prinz, C. Kirchner, R. Kling, F. Reuss, W. Limmer, and A. Waag, J. Appl. Phys., 96, 289 (2004).
    37. G. Carlotti, D. Fioretto, G. Socino, and E. Verona, J. Phys.: Condens. Matter, 7, 9147 (1995).
    38. L. L. Guo, Y. H. Zhang, and W. Z. Shen, Appl. Phys. Lett., 89, 161920 (2006).
    39. J. B. Wang, H. M. Zhong, Z. F. Li, and W. Lu, Appl. Phys. Lett., 88, 101913 (2006).
    40. H. F. Liu, N. Xiang, S. Tripathy and S. J. Chua, J. Appl. Phys., 99, 103503 (2006).
    41. C. Bundesmann, A. Rahm, M. Lorenz, M. Grundmann, and M. Schubert, J. Appl. Phys., 99, 113504 (2006).
    42. J. Huso, J. L. Morrison, H. Hoeck, E. Casey, L. Bergman, T. D. Pounds, and M. G. Norton, Appl. Phys. Lett., 91, 111906 (2007).
    43. R. Cuscó, E. Alarcón-Lladó, J. Ibá?ez, L. Artús, J. Jiménez, B. Wang, and M. J. Callahan, Phys. Rev. B, 75, 165202 (2007).
    44. K. Parlinski, J. ?a?ewski, and Y. Kawazoe, J. Phys. Chem. Solids, 61, 87 (2000).
    45. P. W. Epperlein, P. Buchmann, and A. Jakubowicz, Appl. Phys. Lett., 62, 455 (1993).
    46. J. Jiménez, E. Martín, A. Torres, and J. P. Landesman, Phys. Rev. B, 58, 10463 (1998).
    47. S. K. Donthu, S. Tripathy, D. Z. Chi, and S. J. Chua, J. Raman Spectrosc., 35, 536 (2004).
    48. P. S. Lee, D. Mangelinck, K. L. Pey, Z. X. Shen, J. Ding, T. Osipowicz, and A. K. See, Electrochem. Solid-State Lett., 3, 153 (2000).
    49. S. K. Donthu, D. Z. Chi, A. S. W. Wong, S. J. Chua, and S. Tripathy, Silicon Materials-Processing Characterization and Reliability: 2002 Spring Meeting MRS Proceedings, vol. 716, p. B11.1.1-6.
    50. F. F. Zhao, S. Y. Chen, Z. X. Shen, X. S. Gao, J. Z. Zheng, A. K. See, and L. H. Chan, J. Vac. Sci. Tech. B, 21, 862 (2003).
    51. F. Li, N. Lustig, P. Klosowski, and J. S. Lannin, Phys. Rev. B, 41, 10210 (1990).
    52. Y. H. Zhang, L. L. Guo, and W. Z. Shen, Mater. Sci. Eng. B, 130, 269 (2006).
    53. D. Mangelinck, J. Y. Dai, J. S. Pan, and S. K. Lahiri, Appl. Phys. Lett., 75, 1736 (1999).
    54. R. N. Wang and J. Y. Feng, J Phys: Condens. Matter, 15, 1935 (2003).
    55. X. P. Qu, Y. L. Jiang, G. P. Ru, F. Lu, B. Z. Li, C. Detavernier, and R. L. van Meirhaeghe, Thin Solid Films, 462-463, 146 (2004).
    56. C. Perrin, F. Nemouchi, G. Clugnet, and D. Mangelinck, J. Appl. Phys., 101, 073512 (2007).
    57. H. Tang and I. P. Herman, Phys. Rev. B, 43, 2299 (1990).
    58. A. Steegen and K. Maex, Mater. Sci. Eng. R, 38, 1 (2002).
    1.沈学础,半导体光谱与光学性质(第二版),科学出版社,2002.
    2. Y. S. Chen, W. Shockley, and G. L. Pearson, Phys. Rev., 151, 648 (1966).
    3. I. F. Chang and S. S. Mitra, Phys. Rev., 172, 924 (1968).
    4. I. F. Chang and S. S. Mitra. Adv. Phys., 20, 359 (1971).
    5. C. Ramkumar, K. P. Jain, and S. C. Abbi, Pyhs. Rev. B, 54, 7921 (1996).
    6. J. Ding, H. Jeon, T. Ishihara, M. Hagerott, A. V. Nurmikko, H. Luo, N. Samarth, and J. Furdyna, Pyhs. Rev. Lett., 69, 1707 (1992).
    7. F. Demangeot, J. Frandon, M. A. Renucci, H. S. Sands, D. N. Batchelder, O. Briot, S. Ruffenach-Clur, Solid State Commun., 109, 519 (1999).
    8. A. Mascarenhas, M. J. Seong, S. Yoon, J. C. Verley, J. F. Geisz, and M. C. Hanna, Phys. Rev. B, 68, 233201 (2003).
    9. H. Najafov, Y. Fukada, S. Ohshio, S. Iida, and H. Saitoh, Jpn. J. Appl. Phys. Part 1, 42, 3490 (2003).
    10. K. A. Alim, V. A. Fonoberov, and A. A. Balandin, Appl. Phys. Lett., 86, 053103 (2005).
    11. J. D. Ye, K. W. Teoh, X. W. Sun, G. Q. Lo, D. L. Kwong, H. Zhao, S. L. Gu, R. Zhang, Y. D. Zheng, S. A. Oh, X. H. Zhang, and S. Tripathy, Appl. Phys. Lett., 91, 091901 (2007).
    12. M. Balkanski, L. M. Falikov, C. Hirlimann, and K. P. Jain, Solid State Commun., 25, 261 (1978).
    13. K. Miwa and A. Fukumoto, Phys. Rev. B, 48, 7897 (1993).
    14. S. Chichibu, T. Azuhata, T. Sota, and S. NaKamura, Appl. Phys. Lett., 69, 4188 (1996).
    15. L. L. Guo, Y. H. Zhang, and W. Z. Shen, Appl. Phys. Lett., 89, 161920 (2006).
    16. D. Behr, J. Wagner, A. Ramakrishnan, H. Obloh, and K. H. Bachem, Appl. Phys. Lett., 73, 241 (1998).
    17. H. B. Ye, J. F. Kong, W. Z. Shen, J. L. Zhao, and X. M. Li, J. Phys. D, 40, 5588 (2007).
    1.褚君浩,窄禁带半导体物理学,科学出版社,2005.
    2.沈学础,半导体光谱与光学性质(第二版),科学出版社,2002.
    3.ü. Ozgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Do?an, V. Avrutin, S.-J. Cho, and H. Morkoc, J. Appl. Phys., 98, 041301 (2005).
    4. Y. J. Zeng, Z. Z. Ye, W. Z. Xu, J. G. Lu, H. P. He, L. P. Zhu, B. H. Zhao, Y. Che, and S. B. Zhang, Appl. Phys. Lett., 88, 262103 (2006).
    5. J. D. Ye, S. L. Gu, F. Li, S. M. Zhu, R. Zhang, Y. Shi, Y. D. Zheng, X. W. Sun, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett., 90, 152108 (2007).
    6. Y. P. Varshni, Physica (Amsterdam), 34, 149 (1967).
    7. A. R. Hutson, J. Phys. Chem. Solids, 8, 467 (1959).
    8. H. J. Ko, Y. F. Chen, Z. Zhu, T. Yao, I. Kobayashi, and H. Uchiki, Appl. Phys. Lett., 76, 1905 (2000).
    9. Y. R. Ryu, T. S. Lee, and H. W. White, Appl. Phys. Lett., 83, 87 (2003).
    10. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett., 81, 1830 (2002).
    11. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, T. C. Collins, W. C. Harsch, and G. Cantwell, Phys. Rev. B, 57, 12151 (1998).
    12. T. Yamamoto, Jpn. J. Appl. Phys. Part 2, 42, L514 (2003).
    13. T. Makino, C. H. Chia, N. T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Appl. Phys. Lett., 76, 3549 (2000).
    14. D. S. Jiang, H. Jung, and K. Ploog, J. Appl. Phys., 64, 1371 (1988).
    15. H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, J. Appl. Phys., 95, 1246 (2004).
    16. Z. S. Liu, X. P. Jing, L. X. Wang, and Y. Li, J. Electrochem. Soc., 153, G1035 (2006).
    17. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Mater., 4, 42 (2004).
    18. W. Liu, S. L. Gu, J. D. Ye, S. M. Zhu, S. M. Liu, X. Zhou, R. Zhang, Y. Shi, Y. D. Zheng, and Y. Hang, Appl. Phys. Lett., 88, 092101 (2006).
    19. S. S. Lin, Z. Z. Ye, J. G. Lu, H. P. He, L. X. Chen, X. Q. Gu, J. Y. Huang, L. P. Zhu and B. H. Zhao, J. Phys. D: Appl. Phys., 41, 155114 (2008).
    20. P. Chen, X. Ma and D. Yang, J. Appl. Phys., 101, 053103 (2007).
    21. J. D. Ye, S. L. Gu, S. M. Zhu, W. Liu, S. M. Liu, R. Zhang, Y. Shi and Y. D. Zheng, Appl. Phys. Lett., 88, 182112 (2006).
    22. C. P. Chen, M. Y. Ke, C. C. Liu, Y. J. Chang, F. H. Yang and J. J. Huang, Appl. Phys. Lett., 91, 091107 (2007).
    23. G. T. Du, W. F. Liu, J. M. Bian, L. Z. Hu, H. W. Liang, X. S. Wang, A. M. Liu and T. P. Yang, Appl. Phys. Lett., 89, 052113 (2006).
    24. Y. I. Alivov, E. V. Kalinina, A. E. Cherenkov, D. C. Look, B. M. Ataev, A. K. Omaev, M. V. Chukichev and D. M. Bagnall, Appl. Phys. Lett., 83, 4719 (2006).
    25. C. Yuen, S. F. Yu, S. P. Lau, Rusli and T. P. Chen, Appl. Phys. Lett., 86, 241111 (2005).
    26. J. L Zhao, X. W. Sun, S. T. Tan, G. Q. Lo, D. L. Kwong and Z. H. Cen, Appl. Phys. Lett., 91, 263501 (2007).
    27. J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, D. X. Zhao and X. W. Fan, J. Phys. D: Appl. Phys., 41, 155103 (2008).
    28. X. W. Sun, J. L. Zhao, S. T. Tan, L. H. Tan, C. H. Tung, G. Q. Lo, D. L. Kwong, Y. W. Zhang, X. M. Li and K. L. Teo, Appl. Phys. Lett., 92, 111113 (2008).
    29. Y. Harada and S. Hashimoto, Phys. Rev. B, 68, 045421 (2003).
    30. Y. F. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu and T. Yao, J. Appl. Phys., 84, 3912 (1998).
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.