ZnO薄膜和纳米线中的施主、受主掺杂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体固态照明有取代传统白炽灯的趋势,代表着人类未来光源的发展方向。1960年以来,科学家陆续开发出红光,绿光发光二极管。而正是科研工作者开发出了高质量p型GaN薄膜的生长技术后,高效率蓝光LED走向了商业化。目前为止,全世界很多科研工作者仍然为不断的提高GaN LED的发光效率而努力。相比较GaN, ZnO同样作为一种宽禁带半导体,有着在发光效率,材料制备,环境友好方面的优势:1)室温下激子结合能高达60 meV,是GaN的两倍多,这使得室温受激辐射能在较低阈值下出现,2)两英寸的ZnO单晶衬底已经被制备出来而且ZnO材料可以在较低温度下生长,Zn源在自然界中储量很丰富而Ga源较稀缺,3)良好的生物相容性和比GaN更强的抗辐射性能。这些方面的优势使得ZnO成为热点研究材料。ZnO的禁带宽度为3.37 eV,而宽禁带半导体的掺杂普遍存在非对称性的困难。具体对于ZnO而言,低电阻率、高空穴迁移率、高晶体质量、稳定的p型ZnO很难重复获得。本文正是在这一难点上研究了ZnO中的施主、受主掺杂行为。具体内容有以下几部分:
     1)由于纳米线优越的光学性能,我们研究了ZnO纳米线中的Al、In族元素掺杂,得出Al、In的施主能级分别为75 meV和102 meV。同时,我们发现MOCVD方法生长的纳米线表面晶体质量较完美,比文献报导中气相输运法制备的纳米线表面质量要好。
     2)较为系统实验研究和理论计算发现Na是ZnO的一种有效受主掺杂源。脉冲激光沉积技术可以实现Na掺杂p型ZnO薄膜,在此基础上制备的ZnO pn结能实现低温电致发光。NaZn受主能级距离价带顶距离为~164 meV。研究表明H对于稳定NaZn受主起着重要的作用。在理解Na掺杂含量、生长温度、H、氧气压对Na掺杂ZnO薄膜电学性能的影响方面后,我们提出了Na掺杂ZnO的p型导电机理模型。模型中总结了三点重要影响因素:1)H在掺杂过程中钝化和激活Nazn受主的作用,2)Nai和NaZn受主之间的竞争需要合适的Na掺杂含量,3)足够的动力学能量和非平衡态条件。
     3)更进一步,研究了Mg含量对Na掺杂p型Zn1-xMgxO(0≤x≤0.25)电学性能的有较为显著的影响,10 at.%-15 at.%的Mg含量的ZnMgO薄膜的p型导电性能比ZnO:Na薄膜得到了提高。另外,在室温电注入条件下,以ZnO/ZnMgO多量子阱做为有源层的p-ZnO:Na/n-ZnO pn结能发蓝紫外光而缺陷发光非常微弱。
     4)考虑到ZnO多晶体薄膜实际上由许多纳米线组合而成,晶界处的负电荷中心(可能是氧吸附)应该降低p型ZnO的迁移率。通过紫外灯光照射削弱晶界势垒后,ZnO:Na薄膜的电学性能可以得到增强,在光照后ZnO:Na薄膜甚至可以发生从n型薄膜到p型的转变。对于光照前在比较优化条件下生长的ZnO:Na薄膜:电阻率为13.8-19Ωcm、霍尔迁移率为0.12-1.42 cm2/V s、空穴浓度为4.66×1018-4.78×1018 cm-3,紫外灯光照后它的电阻率可以达到3.8Ωcm、空穴迁移率为7.91 cm2/V s、空穴浓度为2.09×1017cm-3。其中空穴迁移率能在光照后提高一个数量级,这可能是削弱晶界影响后p型ZnO:Na薄膜的导电信息。
     5)文章后面的重点放在提高p型ZnO的晶体质量上,我们使用脉冲激光沉积技术,实现了P掺杂的单晶体ZnO纳米线阵列的生长,并发现单根ZnO纳米线中P掺杂可能存在不均匀现象。
     6)最后,考虑到纳米技术和薄膜技术各自的缺陷和优点,我们结合纳米科技和薄膜技术,实现了单晶体p型ZnO和ZnMgO材料的制备,得到的单晶体ZnO和ZnMgO材料的p型性能在11个星期后依然稳定。
Semiconductor solid-state-lighting, which represents the future of human light source, has the tendency to replace the traditional bulb. Since 1960s, scientists have developed red, green light-emitting diodes (LEDs) based on solid semiconductors. After successfully fabrication of high-quality p-type GaN film, high-efficiency blue LED is commercialized. Up to now, researchers around the world have been still working hard to further improve the luminescence-efficiency of GaN based LED. Compared with GaN, ZnO has unique advantages such as:1) exciton energy is as large as 60 meV, which is two times of that of GaN and allows the realization of stable room-temperature stimulated laser; 2) ZnO single-crystal substrate as large as two inches is available and ZnO is amenable to low-temperature growth with a vast zinc resources in nature; 3) ZnO is bio-compatible and high-resist to the radiation. All these advantages promote ZnO as one of the hottest semiconductor in the world. As the problem of asymmetry doping widely exists in the area of wide-bandgap semiconductor, ZnO is suffered from p-type doping. Low resistivity, high hole mobility, high crystal quality and stable ZnO has been rarely reproducibly fabricated. This dissertation focuses on the donor and acceptor behavior in the ZnO film and nanowires. The detailed investigations can be divided into several parts:
     1) Because of the excellent crystal-quality of ZnO, we have investigated the donor behavior of Al, In in ZnO nanorods. The donor levels of the Al and In are 75 meV and 102 meV, respectively, which add difficulty to the p-type doping in ZnO. On the other hand, we found that the surface crystal quality of ZnO nanowires grown by MOCVD method is superior to that of nanowires grown by VPT method.
     2) Through theory and systematical experiments, we deduce that Na is a good acceptor dopant for ZnO. Utilizing PLD technique and Na doping, relative stable, low-resistivity p-type ZnO has been achieved and p-n homojunction LED has been realized. We pointed out that H is critical for promoting formation of Nazn acceptor, which has an acceptor level of-164 meV.
     3) Furthermore, through Na doping, we have realized p-type Zn1-xMgxO (0≤x≤0.25) films and found that an appropriate content of Mg (0.11≤x≤0.15) may enhance the p-type behavior. Alternatively, we have observed UV-blue emission from a p-ZnO:Na/n-ZnO junction containing a Zn0.9Mg0.1O/ZnO multi-quantum wells at room temperature.
     4) Considering ZnO films are composed of numerous nanorods, we propose that negative charged adsorptions existed in the crystal grain boundaries degrade the hole mobility. After reducing the barrier height in the grain boundaries by UV illumination, we observed an enhanced p-type behavior or even a transition from n-type to p-type conductivity for ZnO:Na films. As for the p-type ZnO:Na film with a resisitivity of 13.8-19Ωcm, a hole concentration of 4.78×1018-4.66×1018cm-3 and a hole mobility of 0.12-1.42 cm2/V s, UV illumination can improve its p-type behavior, and a best p-type film with a resisitivity of 3.8 Qcm, a hole concentration of 2.09×1017 cm-3 and a hole mobility of 7.91 cm2/V s can be reproducibly obtained.
     5) We put emphasis on the growth of single-crystalline acceptor doped ZnO related materials. We have developed a PLD technique to grow highly-oriented phosphorus doped ZnO nanowires. However, we found that the phosphorous doping concentration in a single ZnO nanowire may be not uniform, as indicated by the varying defect density along the nanowire.
     6) Finally, regarding the disadvantages and advantages of a single nanowire or film growth technique, we demonstrated a new strategy to grow single-crystalline Na doped p-type ZnO or ZnMgO materials in combination of nano technique and film technique. The p-type behavior of the obtained single-crystalline p-type ZnO materials is stable over 11 weeks.
引文
[1]D. C. Look, B. Claftin, P-type doping and devices based on ZnO, Phys. Status Solidi B, 2004,241 (3):624-630
    [2]A. Janotti, C. G. Van de Walle, Fundamentals of zinc oxide as a semiconductor, Rep. Prog. Phys.,2009,72 (12):126501:1-29
    [3]C. Klingshirm, ZnO:From basics towards applications, Phys. Status Solidi B,2007,244 (9):3027-3073
    [4]D. C. Look, B. Claflin, Y. I. Alivov, S. J. Park, The future of ZnO light emitters, Phys. Status Solidi A,2004,201 (10):2203-2212
    [5]J. Wrobel, J. Piechota, On the structural stability of ZnO phases, Solid State Commun., 2008,146324-329
    [6]J. E. Jaffe, A. C. Hess, Hartree-Fock study of phase changes in ZnO at high pressure, Phys. Rev. B,1993,48 (11):7903-7909
    [7]A. Ashrafi, C. Jagadish, Review of zincblende ZnO:Stability of metastable ZnO phases, J. Appl. Phys.,2007,102 (7):071101:1-12
    [8]A. A. Ashrafi, A. Ueta, H. Kumano, I. Suemune, Role of ZnS buffer layers in growth of zincblende ZnO on GaAs substrates by metalorganic melecular-beam epitaxy, J. Cryst. Growth, 2000,221435-439
    [9]A. B. M. A. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Growth and characterization of hypothetical zinc-blende ZnO films on GaAs(001) substrates with ZnS buffer layers, Appl. Phys. Lett.,2000,76 (5):550-552
    [10]G. H. Lee, T. Kawaszoe, M. Ohtsu, Room temperature near-field photoluminescence of zinc-blend and wurtzite ZnO structures, Appl. Surf. Sci.,2005,239 394-397
    [11]Y. Ding, Z. L. Wang, T. J. Sun, J. S. Qiu, Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires, Appl. Phys. Lett.,2007,90 (15):153310:1-3
    [12]R. Agrawal, B. Peng, H. D. Espinosa, Experimental-computational investigation of ZnO nanowires strength and fracture, Nano Lett.,2009,9 (12):4177-4183
    [13]D. G. Thomas, The exciton spectrum of zinc oxide, J. Phys. Chem. Solids,1960,15 (1-2): 86-96
    [14]H. Shindo, T. L. Brown, Infrared spectra of complexes of L-crysteine and related compounds with zinc(2) cadmium(2) mercury(2) and lead(2), J. Am. Chem. Soc.,1965,87 (9): 1904-1909
    [15]W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, B. K. Meyer, Valence-band ordering and magneto-optic exciton fine structure in ZnO, Phys. Rev. B,2002,65 (7): 075207:1-12
    [16]A. Kobayashi, O. F. Sankey, S. M. Volz, J. D. Dow, Semiempirical tight-binding band structures of wurtzite semiconductors:A1N, CdS, CdSe, ZnS, and ZnO, Phys. Rev. B,1983,28 (2):935-945
    [17]U. Rossler, Energy Bands of Hexagonal Ⅱ-Ⅵ Semiconductors, Phys. Rev.,1969,184 (3): 733-738
    [18]R. Helbig, Growth of Larger pure and doped ZnO crystals from gas-phase, J. Cryst. Growth,1972,1525-31
    [19]D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell, W. C. Harsch, Electrical properties of bulk ZnO, Solid State Commun.,1998,105 399-401
    [20]E. Ohshima, H. Ogino, I. Niikura, K. Maeda, M. Sato, M. Ito, T. Fukuda, Growth of the 2-in-size bulk ZnO single crystals by the hyrdrothermal method, J. Cryst. Growth,2004,260 166-170
    [21]K. Maeda, M. Sato, I. Niikura, T. Fukuda, Growth of 2 inch ZnO bulk single crystal by the hydrothermal method Semicond. Sci. Technol.,2005,20 S49-S54
    [22]J. Nause, B. Nemeth, Pressurized melt growth of ZnO boules, Semicond. Sci. Technol., 2005,20 S45-S48
    [23]D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, K. Nordlund, Evidence for native-defect donors in n-type ZnO, Phys. Rev. Lett.,2005,95 (22):225502:1-4
    [24]D. M. Hofmann, A. Hofstaetter, F. Leiter, H. J. Zhou, F. Henecker, B. K. Meyer, S. B. Orlinskii, J. Schmidt, P. G. Baranov, Hydrogen:A relevant shallow donor in zinc oxide, Phys. Rev. Lett.,2002,88 (4):045504:1-4
    [25]S. E. Harrison, Conductivity and hall effect of ZnO at low temperatures, Phys. Rev.,1954, 93 (1):52-62
    [26]A. Janotti, C. G. V. d. Walle, Native point defects in ZnO, Phys. Rev. B,2007,76 (16): 165202:1-22
    [27]S. B. Zhang, S. H. Wei, A. Zunger, Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO, Phys. Rev. B,2001,63 (7):075205:1-7
    [28]F. Tuomisto, V. Ranki, K. Saarinen, D. C. Look, Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO, Phys. Rev. Lett.,2003,91 (20):205502:1-4
    [29]A. F. Kohan, G. Ceder, D. Morgan, C. G. V. d. Walle, First-principles study of native point defects in ZnO, Phys. Rev. B,2000,61 15019-15027
    [30]C. G. Van de Walle, Hydrogen as a cause of doping in zinc oxide, Phys. Rev. Lett.,2000, 85(5):1012-1015
    [31]B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. StraBburg, M. Dworzak, U. Haboeck, A. V. Rodina, Bound exciton and donor-acceptor pair recombination, Phys. Status Solidi B,2004,241 (2):231-260
    [32]B. K. Meyer, J. Sann, S. Lautenschlager, M. R. Wagner, A. Hoffmann, Ionized and neutral donor-bound excitons in ZnO, Phys. Rev. B,2007,76 (18):184120:1-4
    [33]D. S. Pan, D. L. Smith, T. C. McGill, Binding of an exciton to a neutral acceptor, Solid State Commun,1976,18 (11-1):1557-1560
    [34]H. Atzmuller, F. Froschl, U. Schroder, Theroy of excitons bound to neutral impurities in polar semiconductors, Phys. Rev. B,1979,19 (6):3118-3129
    [35]A. Zeuner, H. Alves, D. M. Hofmann, B. K. Meyer, A. Hoffmann, U. Haboeck, M. Strassburg, M. Dworzak, Optical properties of the nitrogen acceptor in epitaxial ZnO, Phys. Status Solidi B,2002,234 (3):R7-R9
    [36]Y. Chen, P. I. Reyes, Z. Q. Duan, G. Saraf, R. Wittstruck, Y. C. Lu, O. Taratula, E. Galoppini, Multifunctional ZnO-Based Thin-Film Bulk Acoustic Resonator for Biosensors, J. Electron. Mater.,2009,38 (8):1605-1611
    [37]N. W. Emanetoglu, J. Zhu, Y. Chen, J. Zhong, Y. M. Chen, Y. C. Lu, Surface acoustic wave ultraviolet photodetectors using epitaxial ZnO multilayers grown on r-plane sapphire, Appl. Phys. Lett.,2004,85 (17):3702-3704
    [38]X. Qiu, J. Zhu, J. Oiler, C. Yu, Z. Wang, H. Yu, Film bulk acoustic-wave resonator based ultraviolet sensor, Appl. Phys. Lett.,2009,94 (15):151917:1-3
    [39]E. Lee, D. I. Moon, J. H. Yang, K. S. Lim, Y. K. Choi, Transparent Zinc Oxide Gate Metal-Oxide-Semiconductor Field-Effect Transistor for High-Responsivity Photodetector, IEEE Electron Device Lett.,2009,30 (5):493-495
    [40]S. J. Young, L. W. Ji, S. J. Chang, T. H. Meen, K. J. Chen, A ZnO-based MOSFET with a photo-CVD SiO2 gate oxide, Semicond. Sci. Technol.,2009,24 (3):035010:1-4
    [41]H. Frenzel, A. Lajn, H. von Wenckstern, G. Biehne, H. Hochmuth, M. Grundmann, ZnO-based metal-semiconductor field-effect transistors with Ag-, Pt-, Pd-, and Au-Schottky gates, Thin Solid Films,2009,518 (4):1119-1123
    [42]H. Frenzel, M. Lorenz, A. Lajn, H. von Wenckstern, G. Biehne, H. Hochmuth, M. Grundmann, ZnO-based metal-semiconductor field-effect transistors on glass substrates, Appl. Phys. Lett,2009,95 (15):153503:1-3
    [43]A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nat. Mater.,2005, 4(1):42-46
    [44]Y. Ryu, T.-S. Lee, J. A. Lubguban, H. W. White, B.-J. Kim, Y.-S. Park, C.-J. Youn, Next generation of oxide photonic devices:ZnO-based ultraviolet light emitting diodes, Appl. Phys. Lett,2006,88 241108:1-3
    [45]Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, Y. Segawa, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Appl. Phys. Lett,1998,72 (25):3270-3272
    [46]K. W. Liu, D. Z. Shen, C. X. Shan, J. Y. Zhang, D. Y. Jiang, Y. M. Zhao, B. Yao, D. X. Zhao, The growth of ZnMgO alloy films for deep ultraviolet detection, J. Phys. D:Appl. Phys., 2008,41 (12):125104:1-3
    [47]E. Monroy, F. Omnes, F. Calle, Wide-bandgap semiconductor ultraviolet photodetectors, Semicond. Sci. Technol.,2003,18 (4):R33-R51
    [48]L. Y. Chen, W. H. Chen, J. J. Wang, F. C. N. Hong, Y. K. Su, Hydrogen-doped high conductivity ZnO films deposited by radio-frequency magnetron sputtering, Appl. Phys. Lett., 2004,85 (23):5628-5630
    [49]Y. Yamamoto, K. Saito, K. Takahashi, M. Konagai, Preparation of boron-doped ZnO thin films by photo-atomic layer deposition, Sol. Energy Mater. Sol. Cells,2001,65 (1-4):125-132
    [50]T. L. Yang, D. H. Zhang, J. Ma, H. L. Ma, Y. Chen, Transparent conducting ZnO:Al films deposited on organic substrates deposited by r.f. magnetron-sputtering, Thin Solid Films, 1998,326 (1-2):60-62
    [51]K. H. Kim, K. C. Park, D. Y. Ma, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, J:Appl. Phys.,1997,81 (12):7764-7772
    [52]A. V. Singh, R. M. Mehra, N. Buthrath, A. Wakahara, A. Yoshida, Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient, J. Appl. Phys.,2001,90 (11):5661-5665
    [53]X. H. Yu, J. Ma, F. Ji, Y. H. Wang, X. J. Zhang, C. F. Cheng, H. L. Ma, Effects of sputtering power on the properties of ZnO:Ga films deposited by r.f. magnetron-sputtering at low temperature, J. Cryst. Growth,2005,274 (3-4):474-479
    [54]Q. B. Ma, Z. Z. Ye, H. P. He, L. P. Zhu, J. Y. Huang, Y. Z. Zhang, B. H. Zhao, Influence of annealing temperature on the properties of transparent conductive and near-infrared reflective ZnO:Ga films, Scripta Mater.,2008,58 (1):21-24
    [55]H. Kato, M. Sano, K. Miyamoto, T. Yao, Growth and characterization of Ga-doped ZnO layers on a-plane sapphire substrates grown by molecular beam epitaxy, J. Cryst. Growth,2002, 237538-543
    [56]T. Makino, Y. Segawa, S. Yoshida, A. Tsukazaki, A. Ohtomo, M. Kawasaki, Gallium concentration dependence of room-temperature near-band-edge luminescence in n-type ZnO:Ga, Appl. Phys. Lett.,2004,85 (5):759-761
    [57]C. E. Benouis, M. Benhaliliba, A. S. Juarez, M. S. Aida, F. Chami, F. Yakuphanoglu, The effect of indium doping on structural, electrical conductivity, photoconductivity and density of states properties of ZnO films, J. Alloys Compd.,2010,490 (1-2):62-67
    [58]T. Minami, H. Sato, H. Nanto, S. Takata, Highly conductive and transparent silicon doped zinc-oxide thin-films prepared by RF magnetron sputtering, Jpn. J. Appl. Phys.,1986,25 (9):L776-L779
    [59]K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, A. Shimizu, Growth of p-type zinc oxide films by chemical vapor deposition, Jpn. J. Appl. Phys.,1997,36 (11A):L1453-L1455
    [60]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl. Phys. Lett.,2002,81 (10):1830-1832
    [61]J. L. Lyons, A. Janotti, C. G. Van de Walle, Why nitrogen cannot lead to p-type conductivity in ZnO, Appl. Phys. Lett.,2009,95 (25):252105:1-4
    [62]K. Thonke, M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, R. Sauer, The role of stacking faults and their associated 0.13 ev acceptor state in doped and undoped ZnO layers and nanostructures, Microelectron. J,2009,40 (2):210-214
    [63]M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, R. Sauer, Stacking fault related 3.31-eV luminescence at 130-meV acceptors in zinc oxide, Phys. Rev. B,2008,77 (12):125215:1-10
    [64]T. M. Barnes, K. Olson, C. A. Wolden, On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide, Appl. Phys. Lett.,2005,86 (11):112112:1-3
    [65]T. Yamamoto, H. Katayama-Yoshida, Solution using a codoping method to unipolarity for the fabrication of p-type ZnO, Jpn. J. Appl. Phys.,1999,38 (2B):L166-L169
    [66]L. G. Wang, A. Zunger, Cluster-doping approach for wide-gap semiconductors:The case of p-type ZnO, Phys. Rev. Lett.,2003,90 (25):256401:1-4
    [67]J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, L. P. Zhu, p-type conduction in N-Al co-doped ZnO thin films, Appl. Phys. Lett.,2004,85 (15):3134-3135
    [68]M. Kumar, T. H. Kim, S. S. Kim, B. T. Lee, Growth of epitaxial p-type ZnO thin films by codoping of Ga and N, Appl. Phys. Lett.,2006,89 (11):112103:1-3
    [69]M. Joseph, H. Tabata, T. Kawai, p-type electrical conduction in ZnO thin films by Ga and N codoping, Jpn. J. Appl. Phys.,1999,38 (11A):L1205-L1207
    [70]L. L. Chen, J. G. Lu, Z. Z. Ye, Y. M. Lin, B. H. Zhao, Y. M. Ye, J. S. Li, L. P. Zhu, p-type behavior in In-N codoped ZnO thin films, Appl. Phys. Lett.,2005,87 (25):252106:1-3
    [71]V. Vaithianathan, B. T. Lee, S. S. Kim, Pulsed-laser-deposited p-type ZnO films with phosphorus doping, J. Appl. Phys.,2005,98 (4):043519:1-4
    [72]M. S. Oh, D. K. Hwang, Y. S. Choi, J. W. Kang, S. J. Park, C. S. Hwang, K. I. Cho, Microstructural properties of phosphorus-doped p-type ZnO grown by radio-frequency magnetron sputtering, Appl. Phys. Lett.,2008,93 (11):111905:1-3
    [73]A. Allenic, W. Guo, Y. Chen, M. B. Katz, G. Y. Zhao, Y. Che, Z. D. Hu, B. Liu, S. B. Zhang, X. Q. Pan, Amphoteric phosphorus doping for stable p-type ZnO, Adv. Mater.,2007,19 (20):3333-3337
    [74]D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, Y. S. Park, Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering, Appl. Phys. Lett.,2005,86 (15):151917:1-3
    [75]K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, S. J. Park, Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant, Appl. Phys. Lett.,2003,83 (1): 63-65
    [76]H. S. Kim, F. Lugo, S. J. Pearton, D. P. Norton, Y.-L. Wang, F. Ren, Phosphorus doped ZnO light emitting diodes fabricated via PLD, Appl. Phys. Lett.,2008,92 (11):112108:1-3
    [77]T. Aoki, Y. Hatanaka, D. C. Look, ZnO diode fabricated by excimer-laser doping, Appl. Phys. Lett.,2000,76 (22):3257-3258
    [78]J. H. Lim, C. K. Kang, K. K. Kim, I. K. Park, D. K. Hwang, S. J. Park, UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering, Adv. Mater.,2006,18 (20):2720-2724
    [79]Y. R. Ryu, T. S. Lee, H. W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition, Applied Physics Letters,2003,83 (1):87-89
    [80]Y. R. Ryu, T. S. Lee, H. W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition, Appl. Phys. Lett.,2003,83 (1):87-89
    [81]Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, H. W. White, Synthesis of p-type ZnO films, J. Cryst. Growth,2000,216 (1-4):330-334
    [82]Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, B. J. Kim, Excitonic ultraviolet lasing in ZnO-based light emitting devices, Appl. Phys. Lett.,2007,90 (13): 131115:1-3
    [83]F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy, Appl. Phys. Lett.,2005,87 (25): 252102:1-3
    [84]S. Chu, M. Olmedo, Z. Yang, J. Y. Kong, J. L. Liu, Electrically pumped ultraviolet ZnO diode lasers on Si, Appl. Phys. Lett.,2008,93 (18):181106:1-3
    [85]L. J. Mandalapu, Z. Yang, F. X. Xiu, D. T. Zhao, J. L. Liu, Homojunction photodiodes based on Sb-doped p-type ZnO for ultraviolet detection, Appl. Phys. Lett.,2006,88 (9): 092103:1-3
    [86]L. J. Mandalapu, Z. Yang, S. Chu, J. L. Liu, Ultraviolet emission from Sb-doped p-type ZnO based heterojunction light-emitting diodes, Appl. Phys. Lett,2008,92 (12):122101:1-3
    [87]S. Chu, J. H. Lim, L. J. Mandalapu, Z. Yang, L. Li, J. L. Liu, Sb-doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes, Appl. Phys. Lett.,2008,92 (15): 152103:1-3
    [88]D. C. Look, Electrical and optical properties of p-type ZnO, Semicond. Sci. Technol., 2005,20 S55-S61
    [89]O. Bierwagen, T. Ive, C. G. Van de Walle, J. S. Speck, Causes of incorrect carrier-type identification in van der Pauw-Hall measurements, Appl. Phys. Lett.,2008,93 (24):242108:1-3
    [90]A. Krtschil, D. C. Look, Z. Q. Fang, A. Dadgar, A. Diez, A. Krost, Local p-type conductivity in n-GaN and n-ZnO layers due to inhornogeneous dopant incorporation, Physica B, 2006,376703-706
    [91]A. Reiser, V. Raeesi, G. M. Prinz, M. Schirra, M. Feneberg, U. Roder, R. Sauer, K. Thonke, Growth of high-quality, uniform c-axis-oriented zinc oxide nano-wires on a-plane sapphire substrate with zinc oxide templates, Microelectron. J,2009,40 (2):306-308
    [92]S. Limpijumnong, S. B. Zhang, S. H. Wei, C. H. Park, Doping by large-size-mismatched impurities:The microscopic origin of arsenic- or antimony-doped p-type zinc oxide, Phys. Rev. Lett.,2004,92 (15):155504:1-4
    [93]W. J. Lee, J. Kang, K. J. Chang, Defect properties and p-type doping efficiency in phosphorus-doped ZnO, Phys. Rev. B,2006,73 (2):024117:1-6
    [94]Z. P. Wei, B. Yao, Z. Z. Zhang, Y. M. Lu, D. Z. Shen, B. H. Li, X. H. Wang, J. Y. Zhang, D. X. Zhao, X. W. Fan, Formation of p-type MgZnO by nitrogen doping, Appl. Phys. Lett.,2006, 89(10):102104:1-3
    [95]C. X. Cong, B. Yao, G. Z. Xing, Y. P. Xie, L. X. Guan, B. H. Li, X. H. Wang, Z. P. Wei, Z. Z. Zhang, Y. M. Lv, D. Z. Shen, X. W. Fan, Control of structure, conduction behavior, and band gap of Zn1-xMgxO films by nitrogen partial pressure ratio of sputtering gases, Appl. Phys. Lett.,2006,89 (26):262108:1-3
    [96]Y. W. Heo, Y. W. Kwon, Y. Li, S. J. Pearton, D. P. Norton, p-type behavior in phosphorus-doped (Zn,Mg)O device structures, Applied Physics Letters,2004,84 (18):3474-3476
    [97]Y. Kwon, Y. Li, Y. W. Heo, M. Jones, P. H. Holloway, D. P. Norton, Z. V. Park, S. Li, Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel, Appl. Phys. Lett.,2004,84 (14):2685-2687
    [98]K. Ip, Y. W. Heo, D. P. Norton, S. J. Pearton, J. R. LaRoche, F. Ren, Zn0.9Mg0.1O/ZnO p-n junctions grown by pulsed-laser deposition, Appl. Phys. Lett.,2004,85 (7):1169-1171
    [99]Y. J. Li, Y. W. Heo, Y. Kwon, K. Ip, S. J. Pearton, D. P. Norton, Transport properties of p-type phosphorus-doped (Zn,Mg)O grown by pulsed-laser deposition, Appl. Phys. Lett.,2005, 87 (7):072101:1-3
    [100]P. Wang, N. F. Chen, Z. G. Yin, R. X. Dai, Y. M. Bai, p-type Znl-xMgxO films with Sb doping by radio-frequency magnetron sputtering, Appl. Phys. Lett.,2006,89 (20):202102:1-3
    [101]J. J. Lander, Reactions of lithium as a donor and acceptor in ZnO, J. Phys. Chem. Solids, 1960,15 (3-4):324-334
    [102]J. Schneider, O. Schirmer, Paramagnetische resonanz eines photoempfind zentrums in lithium-doped ZnO Zeitschrift Fur Naturforschung Part a-Astrophysik Physik Und Physikalische Chemie,1963, A 18 (1):20-28
    [103]O. F. Schirmer, Structure of paragnetic lithium center in zinc oxide and beryllium oxide, J. Phys. Chem. Solids,1968,29 (8):1407-1429
    [104]R. T. Cox, D. Block, A. Herve, R. Picard, C. Santier, R. Helbig, Exchange Braodend, optically detected ESR-spectra fro luminescent donor-acceptor pairs in Li doped ZnO, Solid State Commun.,1978,25 (2):77-80
    [105]E. C. Lee, K. J. Chang, Possible p-type doping with group-I elements in ZnO, Phys. Rev. B,2004,70(11):115210:1-4
    [106]M. G. Wardle, J. P. Goss, P. R. Briddon, Theory of Li in ZnO:A limitation for Li-based p-type doping, Phys. Rev. B,2005,71 (15):155205:1-10
    [107]C. H. Park, S. B. Zhang, S.-H. Wei, Origin of p-type doping difficulty in ZnO:The impurity perspective, Phys. Rev. B,2002,66 073202:1-3
    [108]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, L. L. Chen, D. Y. Li, L. P. Zhu, B. H. Zhao, Y. L. Hu, Realization of p-type ZnO films via mondoping of Li acceptor, J. Cryst. Growth,2005,283180-184
    [109]Y. J. Zeng, Z. Z. Ye, J. G. Lu, W. Z. Xu, L. P. Zhu, B. H. Zhao, S. Limpijumnong, Identification of acceptor states in Li-doped p-type ZnO thin films, Appl. Phys. Lett.,2006,89 (4):042106:1-3
    [110]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G. Lu, L. P. Zhu, B. H. Zhao, Dopant source choice for formation of p-type ZnO:Li acceptor, Appl. Phys. Lett.,2006,88 (6):062107:1-3
    [[111]C. Rauch, W. Gehlhoff, M. R. Wagner, E. Malguth, G. Callsen, R. Kirste, B. Salameh, A. Hoffmann, S. Polarz, Y. Aksu, M. Driess, Lithium related deep and shallow acceptors in Li-doped ZnO nanocrystals, J. Appl. Phys.,2010,107 024311-1-5
    [112]L. L. Yang, Z. Z. Ye, L. P. Zhu, Y. J. Zeng, Y. F. Lu, B. H. Zhao, Fabrication of p-type ZnO thin films via DC reactive magnetron sputtering by using Na as the dopant source, J. Electron. Mater.,2007,36 (4):498-501
    [113]A. Krtschil, A. Dadgar, N. Oleynik, J. Blasing, A. Diez, A. Krost, Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic, Appl. Phys. Lett.,2005,87 (26): 262105:1-3
    [114]A. Krtschil, A. Dadgar, A. Diez, A. Krost, Electrical characterization of defect states in local conductivity domains in ZnO:NAs layers, J. Mater. Res.,2007,22 (7):1775-1778
    [115]B. Wang, Y. Zhao, J. H. Min, W. B. Sang, Ag-N dual-accept doping for the fabrication of p-type ZnO, Appl. Phys. A.,2009,94 (4):715-718
    [116]T. H. Vlasenflin, M. Tanaka, p-type conduction in ZnO dual-acceptor-doped with nitrogen and phosphorus, Solid State Commun.,2007,142 (5):292-294
    [117]X. H. Wang, B. Yao, Z. P. Wei, D. Z. Sheng, Z. Z. Zhang, B. H. Li, Y. M. Lu, D. X. Zhao, J. Y. Zhang, X. W. Fan, L. X. Guan, C. X. Cong, Acceptor formation mechanisms determination from electrical and optical properties of p-type ZnO doped with lithium and nitrogen, J. Phys. D:Appl. Phys.,2006,39 (21):4568-4571
    [118]J. G. Lu, Y. Z. Zhang, Z. Z. Ye, L. P. Zhu, L. Wang, B. H. Zhao, Q. L. Liang, Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method, Appl. Phys. Lett.,2006,88 (22):222114:1-3
    [119]Y. Z. Zhang, J. G. Lu, Z. Z. Ye, H. P. He, L. P. Zhu, B. H. Zhao, L. Wang, Effects of growth temperature on Li-N dual-doped p-type ZnO thin films prepared by pulsed laser deposition, Appl. Sur. Sci.,2008,254 (7):1993-1996
    [120]W. Jun, Y. T. Yang, Deposition of K-doped p type ZnO thin films on (0001) A12O3 substrates, Mater. Lett.,2008,62 (12-13):1899-1901
    [121]H. S. Kang, B. Du Ahn, J. H. Kim, G. H. Kim, S. H. Lim, H. W. Chang, S. Y. Lee, Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant, Appl. Phys. Lett.,2006,88 (20):202108:1-3
    [122]L. Duan, W. Gao, R. Q. Chen, Z. X. Fu, Influence of post-annealing conditions on properties of ZnO:Ag films, Solid State Commun.,2008,145 (9-10):479-481
    [123]K. S. Ahn, T. Deutsch, Y. Yan, C. S. Jiang, C. L. Perkins, J. Turner, M. Al-Jassim, Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation, J. Appl. Phys.,2007,102 (2):023517:1-6
    [124]S. T. Tan, X. W. Sun, Z. G. Yu, P. Wu, G. Q. Lo, D. L. Kwong, p-type conduction in unintentional carbon-doped ZnO thin films, Appl. Phys. Lett.,2007,91 (7):072101:1-3
    [125]T. S. Herng, S. P. Lau, C. S. Wei, L. Wang, B. C. Zhao, M. Tanemura, Y. Akaike, Stable ferromagnetism in p-type carbon-doped ZnO nanoneedles, Appl. Phys. Lett.,2009,95 (13): 133103:1-3
    [126]Z. W. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of Semiconducting Oxides, Science,2001, 2911947-1949
    [127]X. Y. Kong, Y. Ding, R. Yang, Z. L. Wang, Single-Crystal Nanorings Formed by Epitaxial Self-Coiling of Polar Nanobelts, Science,2004,27 1348-1351
    [128]L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv. Mater.,2003,15 (5):464-466
    [129]X. D. Wang, C. J. Summers, Z. L. Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays, Nano Lett.,2004,4 (3): 423-426
    [130]H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. Gosele, Monocrystalline spinel nanotube fabrication based on the Kirkendall effect, Nat. Mater.,2006,5 (8):627-631
    [131]H. D. Yu, Z. P. Zhang, M. Y. Han, X. T. Hao, F. R. Zhu, A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays, J. Am. Chem. Soc,2005,127 (8):2378-2379
    [132]P. X. Gao, Y. Ding, W. Mai, W. L. Hughes, C. Lao, Z. L. Wang, Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices, Science,2005,309 1700-1704
    [133]R. Yang, Y. Ding, Z. L. Wang, Deformation-free single-crystal Nanohelixes of polar Nanowires, Nano Lett.,2004,4 (7):1309-1312
    [134]X. Y. Kong, Z. L. Wang, Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts, Nano Lett.,2003,3 (12):1625-1631
    [135]Y. Dai, Y. Zhang, Q. K. Li, C. W. Nan, Synthesis and optical properties of tetrapod-like zinc oxide nanorods, Chem. Phys. Lett,2002,358 (1-2):83-86
    [136]C. X. Xu, X. W. Sun, Z. L. Dong, M. B. Yu, Self-organized nanocomb of ZnO fabricated by Au-catalyzed vapor-phase transport, J. Cryst. Growth,2004,270 (3-4):498-504
    [137]Z. L. Wang, New Developments in Transmission Electron Microscopy for Nanotechnology, Adv. Mater.,2003,15 (18):1497-1514
    [138]Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang, Y. Zhang, Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces, Adv. Funct. Mater.,2004,14943-956
    [139]Z. L. Wang, Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing, Appl. Phys. A.,2007,88 (1):7-15
    [140]I. Shalish, H. Temkin, V. Narayanamurti, Size-dependent surface luminescence in ZnO nanowires, Phys. Rev. B,2004,69 245401:1-4
    [141]J. Grabowska, A. Meaney, K. K. Nanda, J. P. Mosnier, M. O. Henry, J. R. Duclere, E. McGlynn, Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: Limiting effects on device potential, Phys. Rev. B,2005,71 (11):115439:1-7
    [142]P.-C. Chang, C.-J. Chien, D. Stichtenoth, C. Rooning, J. G. Lu, Finite Size effect in ZnO nanowires, Appl. Phys. Lett.,2007,90 (11):113101:1-3
    [143]Y. Yang, B. K. Tay, X. W. Sun, J. Y. Sze, Z. J. Han, J. X. Wang, Quenching of surface-exciton emission from ZnO nanocombs by plasma immersion ion implantation, Appl. Phys. Lett., 2007,91 (7):071921:1-3
    [144]Y. Yang, X. W. Sun, B. K. Tay, P. H. T. Cao, J. X. Wang, X. H. Zhang, Revealing the surface origin of green band emission from ZnO nanostructures by plasma immersion ion implantation induced quenching, J. Appl. Phys.,2008,103 (6):064307:1-4
    [145]J.-P. Richters, T. Voss, L. Wischmeaier, I. Ruckmann, J. Gutowski, Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires, Appl. Phys. Lett,2008,92 011103-
    [146]B. Xiang, P. W. Wang, X. Z. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. P. Yu, D. L. Wang, Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition, Nano Lett.,2007,7 (2):323-328
    [147]G. D. Yuan, W. J. Zhang, J. S. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee, S. T. Lee, p-type ZnO nanowire arrays, Nano Lett.,2008,8 (8):2591-2597
    [148]B. Q. Cao, M. Lorenz, M. Brandt, H. von Wenckstern, J. Lenzner, G. Biehne, M. Grundmann, p-type conducting ZnO:P microwires prepared by direct carbothermal growth, Phys. Status Solidi,2008,2 (1):37-39
    [149]M. Lorenz, B. Q. Cao, G. Zimmermann, G. Biehne, C. Czekalla, H. Frenzel, M. Brandt, H. von Wenckstern, M. Grundmann, Stable p-type ZnO:P nanowire/n-type ZnO:Ga film junctions, reproducibly grown by two-step pulsed laser deposition, J. Vac. Sci. Technol. B,2009, 27(3):1693-1697
    [150]K. Mohanta, S. K. Batabyal, A. J. Pal, pn-junction rectifiers based on p-ZnO and n-ZnO nanoparticles, Chem. Mater.,2007,19(15):3662-3666
    [151]Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan, K. L. Teo, A p-n homojunction ZnO nanorod light-emitting diode formed by As ion implantation, Appl. Phys. Lett.,2008,93 (25):253107:1-3
    [152]Y. H. Leung, Z. B. He, L. B. Luo, C. H. A. Tsang, N. B. Wong, W. J. Zhang, S. T. Lee, ZnO nanowires array p-n homojunction and its application as a visible-blind ultraviolet photodetector, Appl. Phys. Lett.,2010,96 (5):053102:1-3
    [153]S. S. Lin, J. I. Hong, J. H. Song, Y. Zhu, H. P. He, Z. Xu, Y. G. Wei, Y. Ding, R. L. Snyder, Z. L. Wang, Phosphorus doped Znl-xMgxO nanowire arrays, Nano Lett.,2009,9 3877-3882
    [154]M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science,2001,292 1897-
    [155]Z. L. Wang, J. H. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays, Science,2006,312 242-246
    [156]X. D. Wang, J. H. Song, J. Liu, Z. L. Wang, Direct-Current Nanogenerator Driven by Ultrasonic Waves, Science,2007,312 102-105
    [157]Y. Qin, X. Wang, Z. L. Wang, Microfibre-nanowire hybrid structure for energy scavenging, Nature,2008,451 809-814
    [158]R. Yang, Y. Qin, L. Dai, Z. L. Wang, Power generation with laterally packaged piezoelectric fine wires, Nat. Nanotechnol.,2009,434-39
    [159]S. Xu, Y. Wei, J. Liu, R. Yang, Z. L. Wang, Integrated Multilayer Nanogenerator Fabricated Using Paried Nanotip-to-Nanowire Brushes, Nano Lett.,2008,8 4027-4032
    [160]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao, Y. H. Lo, D. Wang, ZnO nanowire UV photodetector with high-internal gain, Nano Lett.,2007,7 1003-1009
    [161]M. Law, L. E. Greene, J. C. Johnson, R. Saykally, P. D. Yang, Nanowire dye-sensitized solar cells, Nat. Mater.,2005,4 (6):455-459
    [162]D. P. Norton, B. C. Chakoumakos, J. D. Budai, D. H. Lowndes, B. C. Sales, J. R. Thompson, D. K. Christen, Superconductivity in SrCuO2-BaCuO2 superlattices:Formation of Artificially Layered Superconducting Materials, Science,1994,265 2074-2077
    [163]D. P. Norton, A. Goyal, J. D. Budai, D. K. Christen, D. M. Kroeger, E. D. Specht, Q. He, B. Saffian, M. Paranthaman, C. E. Klabunde, D. F. Lee, B. C. Sales, F. A. List, Epitaxial YBa2Cu3O7 on Biaxially Textured Nickel (001), Science,1996,274 755-757
    [164]M. J. Aziz, Film growth mechanisms in pulsed laser deposition, Appl. Phys. A,2008,93 579-587
    [165]Y. B. Li, Y. Bando, D. Golberg, ZnO nanoneedles with tip surface perturbations: Excellent field emitters, Appl. Phys. Lett.,2004,84 (18):3603-3605
    [166]B. X. Lin, Z. X. Fu, Y. B. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett.,2001,79 (7):943-945
    [167]D. C. Reynolds, D. C. Look, B. Jogai, Fine structure on the green band in ZnO, J. Appl. Phys.,2001,89 (11):6189-6191
    [168]R. Dingle, Luminescent transitions associated with divalent copper impurities and green emission from semiconducting zinc oxide, Phys. Rev. Lett.,1969,23 (11):579-581
    [169]T. B. Hur, Y. H. Hwang, H. K. Kim, Impurity band characteristics near the band edge of Al-doped ZnO, J. Appl. Phys.,2004,96 (3):1507-1510
    [170]. Y. Ding, X. Y. Kong, Z. L. Wang, Doping and planar defects in the formation of single-crystal ZnO nanorings, Phys. Rev. B,2004,70 (23):235408:1-7
    [171]C. Li, Y. Bando, M. Nakamura, N. Kimizuka, Relation between In ion ordering and crystal structure variation in homologous compounds InMO3(ZnO)(m) (M=Al and In; m= integer), Micron,2000,31 (5):543-550
    [172]A. Janotti, C. G. Van de Walle, Oxygen vacancies in ZnO, Appl. Phys. Lett.,2005,87 (12):122102:1-3
    [173]H. P. He, H. P. Tang, Z. Z. Ye, L. P. Zhu, B. H. Zhao, L. Wang, X. H. Li, Temperature-dependent photoluminescence of quasialigned Al-doped ZnO nanorods, Appl. Phys. Lett.,2007, 90 (2):023104:1-3
    [174]S. Lin, H. Tang, Z. Ye, H. He, Y. Zeng, B. Zhao, L. Zhu, Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration, Mater. Lett.,2008,62603-606
    [175]S. Muller, D. Stichtenoth, M. Uhrmacher, H. Hofsass, C. Ronning, J. Roder, Unambiguous identification of the PL-I-9 line in zinc oxide, Appl. Phys. Lett.,2007,90 (1): 012107:1-3
    [176]H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, H. Kalt, Ordered, uniform-sized ZnO nanolaser arrays, Appl. Phys. Lett.,2007,91 (18):181112:1-3
    [177]L. J. Wang, N. C. Giles, Determination of the ionization energy of nitrogen acceptors in zinc oxide using photoluminescence spectroscopy, Appl. Phys. Lett.,2004,84 (16):3049-3051
    [178]G. Xiong, K. B. Ucer, R. T. Williams, J. Lee, D. Bhattacharyya, J. Metson, P. Evans, Donor-acceptor pair luminescence of nitrogen-implanted ZnO single crystal, J. Appl. Phys.,2005, 97 (4):043528:1-4
    [179]J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, Nitrogen-related recombination mechanisms in p-type ZnO films grown by plasma-assisted molecular beam epitaxy, J. Appl. Phys.,2007,102 (4):043522:1-6
    [180]H. Von Wenckstern, G.Benndorf, S. Heitsch, J. Sann, M. Brandt, H. Schmidt, J. Lenzner, M. Lorenz, A. Y. Kuznetsov, B. K. Meyer, M. Grundmann, Properties of phosphorus doped ZnO, Appl. Phys. A.,2007,88 (1):125-128
    [181]F. X. Xiu, L. J. Mandalapu, Z. Yang, J. L. Liu, G. F. Liu, J. A. Yarmoff, Bi-induced acceptor states in ZnO by molecular-beam epitaxy, Appl. Phys. Lett.,2006,89 (5):052103:1-3
    [182]S. S. Lin, Z. Z. Ye, H. P. He, Y. J. Zeng, H. P. Tang, B. H. Zhao, L. P. Zhu, Catalyst-free synthesis of vertically aligned screw-shape InZnO nanorods array, J. Cryst. Growth,2007,306 339-343
    [183]L. J. Wang, N. C. Giles, Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy, J. Appl. Phys.,2003,94 (2):973-978
    [184]S. F. Chichibu, A. Tsukazaki, M. Kawasaki, K. Tamura, Y. Segawa, T. Sota, H. Koinuma, Photoreflectance spectra of a ZnO heteroepitaxial film on the nearly lattice-matched ScAlMgO4 (0001) substrate grown by laser molecular-beam epitaxy, Appl. Phys. Lett.,2002,80 (16):2860-2862
    [185]D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, W. C. Harsch, Valence-band ordering in ZnO, Phys. Rev. B,1999,60 (4):2340-2344
    [186]C. Boemare, T. Monteiro, M. J. Soares, J. G. Guilherme, E. Alves, Photoluminescence studies in ZnO samples, Physica B,2001,308985-988
    [187]N. Y. Garces, L. Wang, L. Bai, N. C. Giles, L. E. Halliburton, G. Cantwell, Role of copper in the green luminescence from ZnO crystals, Appl. Phys. Lett.,2002,81 (4):622-624
    [188]Y. Yang, X. W. Sun, B. K. Tay, P. H. T. Cao, J. X. Wang, X. H. Zhang, Revealing the surface origin of green band emission from ZnO nanostructures by plasma immersion ion implantation induced quenching, J. Appl. Phys.,2008,103 064307-
    [189]H. P. He, Z. Z. Ye, S. S. Lin, H. P. Tang, Y. Z. Zhang, L. P. Zhu, J. Y. Huang, B. H. Zhao, Determination of the free exciton energy in ZnO nanorods from photoluminescence excitation spectroscopy, J. Appl. Phys.,2007,102 (1):013511:1-4
    [190]L. Wischmeier, T. Voss, I. Ruckmann, J. Gutowski, Correlations between surface-excitonic emission bands in ZnO nanowires, Nanotechnol.,2008,19 (13):135705:1-5
    [191]L. Wischmeier, T. Voss, I. Ruckmann, J. Gutowski, A. C. Mofor, A. Bakin, A. Waag, Dynamics of surface-excitonic emission in ZnO nanowires, Phys. Rev. B,2006,74 (19): 195333:1-9
    [192]J. P. Richters, T. Voss, L. Wischmeier, I. Ruckmann, J. Gutowski, Influence of polymer coating on the low-temperature photoluminescence properties of ZnO nanowires, Appl. Phys. Lett.,2008,92(1):011103:1-3
    [193]T. Voss, C. Bekeny, L. Wischmeier, H. Gafsi, S. Borner, W. Schade, A. C. Mofor, A. Bakin, A. Waag, Influence of exciton-phonon coupling on the energy position of the near-band-edge photoluminescence of ZnO nanowires, Appl. Phys. Lett.,2006,89 (18):182107:1-3
    [194]S. Bethke, H. Pan, B. W. Wessels, Luminescence of heteroepitaxial zinc-oxide, Appl. Phys. Lett.,1988,52 (2):138-140
    [195]F. Y. Jen, Y. C. Lu, C. Y. Chen, H. C. Wang, C. C. Yang, B. P. Zhang, Y. Segawa, Temperature-dependent exciton dynamics in a ZnO thin film, Appl. Phys. Lett.,2005,87 (25): 252117:1-3
    [196]S. W. Jung, W. I. Park, H. D. Cheong, G. C. Yi, H. M. Jang, S. Hong, T. Joo, Time-resolved and time-integrated photoluminescence in ZnO epilayers grown on Al2O3(0001) by metalorganic vapor phase epitaxy, Appl. Phys. Lett.,2002,80 (11):1924-1926
    [197]I. C. Robin, B. Gauron, P. Ferret, C. Tavares, G. Feuillet, L. S. Dang, B. Gayral, J. M. Gerard, Evidence for low density of nonradiative defects in ZnO nanowires grown by metal organic vapor-phase epitaxy, Appl. Phys. Lett,2007,91 143120-
    [198]S. S. Hong, T. Joo, W. I. Park, Y. H. Jun, G. C. Yi, Time-resolved photoluminescence of the size-controlled ZnO nanorods, Appl. Phys. Lett.,2003,83 (20):4157-4159
    [199]J. Fallert, R. Hauschild, F. Stelzl, A. Urban, M. Wissinger, H. J. Zhou, C. Klingshirn, H. Kalt, Surface-state related luminescence in ZnO nanocrystals, J. Appl. Phys.,2007,101 (7): 073506:1-4
    [200]R. Hauschild, H. Lange, H. Priller, C. Klingshirn, R. Kling, A. Waag, H. J. Fan, M. Zacharias, H. Kalt, Stimulated emission from ZnO nanorods, Phys. Status Solidi B,2006,243 (4):853-857
    [201]L. Wischmeier, T. Voss, S. Borner, W. Schade, Comparison of the optical properties of as-grown ensembles and single ZnO nanowires, Appl. Phys. A.,2006,84 (1-2):111-116
    [202]Y. P. Varshni, Temperature dependence of energy gap in semiconductors, Physica,1967, 34(1):149-154
    [203]G. D. Cody, in Hydrogenated Amorphous Silicon, Semiconductors and Semimetals Vol. 21, edited by J. I. Pankove, Academic, New York,1984, Pt.2, Chap.2, pp.42-47,
    [204]R. Passler, Basic model relations for temperature dependencies of fundamental energy gaps in semiconductors, Phys. Status Solidi B,1997,200 (1):155-172
    [205]F. Calle, F. J. Sanchez, J. M. G. Tijero, M. A. SanchezGarcia, E. Calleja, R. Beresford, Exciton and donor-acceptor recombination in undoped GaN on Si(111), Semicond. Sci. Technol., 1997,12(11):1396-1403
    [206]J. Lee, E. S. Koteles, M. O. Vassell, Luminescence linewidths of excitons in GaAs quantum-wells below 150K, Phys. Rev. B,1986,33 (8):5512-5516
    [207]Y. Zhang, D. J. Chen, C. T. Lee, Free exciton emission and dephasing in individual ZnO nanowires, Appl. Phys. Lett.,2007,91 (16):161911:1-3
    [208]X. T. Zhang, Y. C. Liu, Z. Z.Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, G. Z. Zhong, X. W. Fan, X. G. Kong, Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films, J. Phys. D:Appl. Phys.,2001,34 (24):3430-3433
    [209]V. A. Fonoberov, K. A. Alim, A. A. Balandin, F. X. Xiu, J. L. Liu, Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals, Phys. Rev. B,2006,73(16):165317:1-9
    [210]S. S. Lin, J. G. Lu, Z. Z. Ye, H. P. He, X. Q. Gu, L. X. Chen, J. Y. Huang, B. H. Zhao, p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes, Solid State Commun.,2008,14825-28
    [211]D. C. Look, R. J. Molnar, Degenerate layer at GaN/sapphire interface:Influence on hall-effect measurements, Appl. Phys. Lett.,1997,70 (25):3377-3379
    [212]M. G. Cheong, K. S. Kim, C. S. Oh, N. W. Namgung, G. M. Yang, C. H. Hong, K. Y. Lim, E. K. Suh, K. S. Nahm, H. J. Lee, D. H. Lim, A. Yoshikawa, Conductive layer near the GaN/sapphire interface and its effect on electron transport in unintentionally doped n-type GaN epilayers, Appl. Phys. Lett.,2000,77 (16):2557-2559
    [213]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, G. Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl. Phys. Lett,2002,81 1830-
    [214]W. Z. Xu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, B. H. Zhao, L. Jiang, J. G. Lu, H. P. He, S. B. Zhang, ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition, Appl. Phys. Lett.,2006,88 (17):173506:1-3
    [215]S. S. Lin, Z. Z. Ye, J. G. Lu, H. P. He, L. X. Chen, X. Q. Gu, J. Y. Huang, L. P. Zhu, B. H. Zhao, Na doping concentration tuned conductivity of ZnO films via pulsed laser deposition and electroluminescence from ZnO homojunction on silicon substrate, J. Phys. D:Appl. Phys., 2008,41 (15):155114:1-4
    [216]Z. Z. Ye, J. G. Lu, Y. Z. Zhang, Y. J. Zeng, L. L. Chen, F. Zhuge, G. D. Yuan, H. P. He, L. P. Zhu, J. Y. Huang, B. H. Zhao, ZnO light-emitting diodes fabricated on Si substrates with homobuffer layers ZnO light-emitting diodes fabricated on Si substrates with homobuffer layers, App!, Phys. Lett.,2007,91 (11):113503:1-3
    [217]U. Kaufmann, P. Schlotter, H. Obloh, K. Kohler, M. Maier, Hole conductivity and compensation in epitaxial GaN:Mg layers, Phys. Rev. B,2000,62 (16):10867-10872
    [218]K. Ip, M. E. Overberg, Y. W. Heo, D. P. Norton, S. J. Pearton, C. E. Stutz, B. Luo, F. Ren, D. C. Look, J. M. Zavada, Hydrogen incorporation and diffusivity in plasma-exposed bulk ZnO, Appl. Phys. Lett.,2003,82 (3):385-387
    [219]F. Stucki, F. Greuter, Key role of oxygen at zinc oxide varistor grain boundaries, Appl. Phys. Lett.,1990,57 (5):446-448
    [220]P. R. Bueno, E. R. Leite, M. M. Oliveira, M. O. Orlandi, E. Longo, Role of oxygen at the grain boundary of metal oxide varistors:A potential barrier formation mechnaism, Appl. Phys. Lett.,2001,79(1):48-50
    [221]Q. H. Li, T. Gao, Y. G. Wang, T. H. Wang, Adorption and desorption of oxygen probed from ZnO nanowire films by photocurrent measurements, Appl. Phys. Lett.,2005,86 (12): 123117:1-3
    [222]Y. Cheng, P. Xiong, L. Fields, J. P. Zheng, R. S. Yang, Z. L. Wang, Intrinsic characteristics of semiconducting oxide nanobelt field-effect transistors, Appl. Phys. Lett.,2006, 89 (9):093114:1-3
    [223]B. Claflin, D. C. Look, S. J. Park, G. Cantwell, Persistent n-type photoconductivity in p-type ZnO, J. Cryst. Growth,2006,287 16-22
    [224]Y. Shapira, R. B. McQuistan, D. Lichtman, Relationship between photodesorption and surface conductivity in ZnO, Phys. Rev. B,1977,15 (4):2163-2169
    [225]R. H. Bude, Interpretation of Hall and Photo-Hall effects in inhomogeneous materials, Appl. Phys. Lett.,1968,13 (4):136-139
    [226]S. S. Lin, H. P. He, Y. F. Lu, Z. Z. Ye, Mechanism of Na-doped p-type ZnO films: Suppressing Na interstitials by codoping with H and Na of appropriate concentrations, J. Appl. Phys.,2009,106 (9):093508:1-5
    [227]A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa, MgxZnl-xO as a Ⅱ-Ⅵ widegap semiconductor alloy, Appl. Phys. Lett., 1998,72 (19):2466-2468
    [228]S. Muthukumar, J. Zhong, Y. Chen, Y. Lu, T. Siegrist, Growth and structural analysis of metalorganic chemical vapor deposited (11(2)over-bar0) MgxZn1-x (0< x< 0.33) films on (01(1)over-bar2) R-plane Al2O3 substrates, Appl. Phys. Lett.,2003,82 (5):742-744
    [229]M. Lorenz, E. M. Kaidashev, A. Rahm, T. Nobis, J. Lenzner, G. Wagner, D. Spemann, H. Hochmuth, M. Grundmann, MgxZn1-xO (0<=x<0.2) nanowire arrays on sapphire grown by high-pressure pulsed-laser deposition, Appl. Phys. Lett.,2005,86 (14):143113:1-3
    [230]J. W. Sun, Y. M. Lu, Y. C. Liu, D. Z. Shen, Z. Z. Zhang, B. H. Li, J. Y. Zhang, B. Yao, D. X. Zhao, X. W. Fan, Hole transport in p-type ZnO films grown by plasma-assisted molecular beam epitaxy, Appl. Phys. Lett.,2006,89 (23):232101:1-3
    [231]B. Claflin, D. C. Look, D. R. Norton, Changes in electrical characteristics of ZnO thin films due to environmental factors, J. Electron. Mater.,2007,36 (4):442-445
    [232]S. S. Lin, H. P. He, Z. Z. Ye, Contribution of grain boundary to the p-type behavior of Na-doped ZnO film, unpublished,
    [233]Y. F. Li, B. Yao, Y. M. Lu, Z. P. Wei, Y. Q. Gai, C. J. Zheng, Z. Z. Zhang, B. H. Li, D. Z. Shen, X. W. Fan, Z. K. Tang, Realization of p-type conduction in undoped MgxZn1-xO thin films by controlling Mg content, Appl. Phys. Lett.,2007,91 (23):232115:1-3
    [234]Z. Z. Ye, S. S. Lin, H. P. He, X. Q. Gu, L. X. Chen, J. G. Lu, J. Y. Huang, L. P. Zhu, L. Wang, Y. Z. Zhang, X. H. Li, Room temperature blue-UV electroluminescence from ZnO light-emitting diodes involving Na-doped p-type ZnO and ZnO/ZnMgO multi-quantum wells, J. Semcond.,2008,29 (8):1433-1435
    [235]X. Q. Gu, L. P. Zhu, Z. Z. Ye, H. P. He, Y. Z. Zhang, F. Huang, M. X. Qiu, Y. J. Zeng, F. Liu, W. Jaeger, Room-temperature photoluminescence from ZnO/ZnMgO multiple quantum wells grown on Si(111) substrates, Appl. Phys. Lett.,2007,91 (2):022103:1-3
    [236]Z. Z. Ye, L. Q. Zhang, J. Y. Huang, Y. Z. Zhang, L. P. Zhu, L. Bin, J. G. Lv, L. Wang, Y. Z. Jin, J. Jie, X. Y, Z. Jun, S. S. Lin, D. Yang, Room-temperature electroluminescence of p-ZnxMg(1-x)O:Na/n-ZnO p-n junction light-emitting diode, J. Semcond.,2009,
    [237]X. Duan, Y. Huang, R. Agarwal, C. M. Lieber, Single-nanowire electrically driven lasers, Nature,2003,421 241-245
    [238]X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature,2001,40966-69
    [239]Y. Taniyasu, M. Kasu, T. Makimoto, An aluminium nitride light-emitting diode with a wavelength of 210 nanometres, Nature,2006,441 325-328
    [240]Y. Kubota, K. Wantanabe, O. Tsuda, T. Taniguchi, Deep Ultraviolet light-emitting Hexagonal Boron Nitride Synthesized at Atmosphere Pressure, Science,2007,317 932-934
    [241]W. Liu, F. X. Xiu, K. Sun, Y. H. Xie, K. L. Wang, Y. Wang, J. Zou, Z. Yang, J. L. Liu, Na-Doped p-Type ZnO Microwires, J. Am. Chem. Soc.,2010,132 (8):2498-2499
    [242]L. C. Tien, S. J. Pearton, D. P. Norton, F. Ren, Synthesis and microstructure of vertically aligned ZnO nanowires grown by high-pressure-assisted pulsed-laser deposition, J. Mater. Sci., 2008,43 (21):6925-6932
    [243]Y. Sun, G. M. Fuge, M. N. R. Ashfold, Growth mechanisms for ZnO nanorods formed by pulsed laser deposition, Superlattices Microstruct.,2006,39 (1-4):33-40
    [244]I. A. Goldthorpe, A. F. Marshall, P. C. McIntyre, Inhibiting Strain-Induced Surface Roughening:Dislocation-Free Ge/Si and Ge/SiGe Core-Shell Nanowires, Nano Lett.,2009,9 (11):3715-3719
    [245]F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C. M. Lieber, Core/Multishell Nanowire Heterostructures as Multicolor High-efficient Light-Emitting Diodes, Nano Lett.,2005,5 (11): 2287-2291
    [246]Y. M. Oh, K. M. Lee, K. H. Park, Y. Kim, Y. H. Ahn, J.-Y. Park, S. Lee, Correlating Luminescence from Individual ZnO Nanostructures with Electronic Transport Characteristics, Nano Lett.,2007,7(12):3681-3685
    [247]A. C. Ford, J. C. Ho, Y.-L. Chueh, Y.-C. Tseng, Z. Fan, J. Guo, J. Bokor, A. Javey, Diameter-dependent electron mobility of InAs Nanowires, Nano Lett.,2009,9(1):360-365
    [248]J. Xiang, W. Lu, Y. J. Hu, Y. Wu, H. Yan, C. M. Lieber, Ge/Si nanowire heterostructures as high-performance field-effect transistors, Nature,2006,441 (7092):489-493
    [249]B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, C. M. Lieber, Coaxial silicon nanowires as solar cells and nanoelectronic power sources, Nature,2007,449 885-890
    [250]L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures, Nature,2002,42057-61
    [251]Y. Yan, J. Li, S.-H. Wei, M. M. Al-Jassim, Possible Approach to overcome the doping Asymmetry in Wideband gap semiconductors, Phys. Rev. Lett.,2007,98 135506:1-4
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.