不同卸载速度下含裂隙岩体的卸载响应(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Unloading responses of pre-flawed rock specimens under different unloading rates
  • 作者:李夕兵 ; 陈正红 ; 翁磊 ; 黎崇金
  • 英文作者:Xi-bing LI;Zheng-hong CHEN;Lei WENG;Chong-jin LI;School of Resources and Safety Engineering, Central South University;School of Civil Engineering, Wuhan University;
  • 关键词:深部开挖 ; 应力卸载 ; 卸载速度 ; 裂纹倾角 ; 离散元方法
  • 英文关键词:deep underground excavation;;stress unloading;;unloading rate;;flaw inclination angle;;distinct element method(DEM)
  • 中文刊名:Transactions of Nonferrous Metals Society of China
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:中南大学资源与安全工程学院;武汉大学土木工程学院;
  • 出版日期:2019-07-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:07
  • 基金:Projects(41630642,11472311)supported by the National Natural Science Foundation of China;; Project(2017zzts181)supported by the Cultivating Excellent Ph Ds of Central South University,China;; Project(201806370062)supported by the China Scholarship Council
  • 语种:英文;
  • 页:167-177
  • 页数:11
  • CN:43-1239/TG
  • ISSN:1003-6326
  • 分类号:TU45
摘要
基于深部开挖过程中的应力重分布分析,利用离散元方法(DEM)对卸载过程进行模拟,揭示卸载条件下卸载速度和裂隙倾角对含裂隙岩体的强度和裂纹特性的影响。结果表明:随着卸载周期的增大,含裂隙岩体的卸载破坏强度呈幂函数增大。同时,结合缺陷上的应力分析发现,含裂隙岩体的卸载破坏强度随着裂隙倾角的增大逐渐增大;卸载条件下含裂隙岩体的裂纹分布主要取决于裂隙倾角,并总结了3种不同的裂隙搭接方式;此外,卸载速度越快,含裂隙岩体的卸载破坏过程越剧烈,岩体内部形成的劈裂裂纹越多。
        Based on the stress redistribution analysis of rock mass during the deep underground excavation, the unloading process of pre-flawed rock material was simulated by distinct element method(DEM). The effects of unloading rate and flaw inclination angle on unloading strengths and cracking properties of pre-flawed rock specimens are numerically revealed. The results indicate that the unloading failure strength of pre-flawed specimen exhibits a power-function increase trend with the increase of unloading period. Moreover, combined with the stress state analysis on the flaws, it is found that the unloading failure strength increases with the increase of flaw inclination angle. The cracking distribution of pre-flawed specimens under the unloading condition closely depends on the flaw inclination angle, and three typical types of flaw coalescence are observed. Furthermore, at a faster unloading rate, the pre-flawed specimen experiences a sharper and quicker unloading failure process, resulting in more splitting cracks in the specimens.
引文
[1] CAO W, LI X, TAO M, ZHOU Z. Vibrations induced by high initial stress release during underground excavations[J]. Tunnelling and Underground Space Technology, 2016, 53:78-95.
    [2] YANG J, LU W, HU Y, CHEN M, YAN P. Numerical simulation of rock mass damage evolution during deep-buried tunnel excavation by drill and blast[J]. Rock Mechanics and Rock Engineering, 2015, 48:2045-2059.
    [3] FAN Y, LU W, ZHOU Y, YAN P, LENG Z, CHEN M. Influence of tunneling methods on the strainburst characteristics during the excavation of deep rock masses[J]. Engineering Geology, 2016, 201:85-95.
    [4] LI X, LI C, CAO W, TAO M. Dynamic stress concentration and energy evolution of deep-buried tunnels under blasting loads[J].International Journal of Rock Mechanics and Mining Sciences, 2018,104:131-146.
    [5] ZHU W C, WEI J, ZHAO J, NIU L L. 2D numerical simulation on excavation damaged zone induced by dynamic stress redistribution[J]. Tunnelling and Underground Space Technology, 2014, 43:315-326.
    [6] ZHAO X G, CAI M. Influence of specimen height-to-width ratio on the strainburst characteristics of Tianhu granite under true-triaxial unloading conditions[J]. Canadian Geotechnical Journal, 2014, 52:890-902.
    [7] HARTLIEB P, GRAFE B, SHEPEL T, MALOVYK A, AKBARI B.Experimental study on artificially induced crack patterns and their consequences on mechanical excavation processes[J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100:160-169.
    [8] ZHAO X G, WANG J, CAI M, CHENG C, MA L K, SU R, ZHAO F,LI D J. Influence of unloading rate on the strainburst characteristics of beishan granite under true-triaxial unloading conditions[J]. Rock Mechanics and Rock Engineering, 2014, 47:467-483.
    [9] HUANG D, LI Y. Conversion of strain energy in triaxial unloading tests on marble[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 66:160-168.
    [10] QIU Shi-li, FENG Xia-ting, ZHANG Chuan-qing, ZHOU Hui, SUN Feng. Experimental research on mechanical properties of deep-buried marble under different unloading rates of confining pressures[J].Chinese Journal of Rock Mechanics&Engineering 2010, 29:1807-1817.(in Chinese)
    [11] LI X, CAO W, ZHOU Z, ZOU Y. Influence of stress path on excavation unloading response[J]. Tunnelling and Underground Space Technology, 2014, 42:237-246.
    [12] ZHANG X P, WONG L N Y. Crack initiation, propagation and coalescence in rock-like material containing two flaws:A numerical study based on bonded-particle model approach[J]. Rock Mechanics and Rock Engineering, 2013, 46:1001-1021.
    [13] LIU T, LIN B, ZOU Q, ZHU C, YAN F. Mechanical behaviors and failure processes of precracked specimens under uniaxial compression:A perspective from microscopic displacement patterns[J]. Tectonophysics, 2016, 672-673:104-120.
    [14] MANOUCHEHRIAN A, SHARIFZADEH M, MARJI M F,GHOLAMNEJAD J. A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression[J]. Archives of Civil and Mechanical Engineering, 2014, 14:40-52.
    [15] ZHAO Z, ZHOU D. Mechanical properties and failure modes of rock samples with grout-infilled flaws:A particle mechanics modeling[J].Journal of Natural Gas Science and Engineering, 2016, 34:702-715.
    [16] LEE H, JEON S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J].International Journal of Solids and Structures, 2011, 48:979-999.
    [17] WONG L N Y, EINSTEIN H H. Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46:239-249.
    [18] WONG R H C, CHAU K T. Crack coalescence in a rock-like material containing two cracks[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35:147-164.
    [19] HUANG D, GU D, YANG C, HUANG R, FU G. Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression[J]. Rock Mechanics and Rock Engineering,2016, 49:375-399.
    [20] YANG S Q, JIANG Y Z, XU W Y, CHEN X Q. Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression[J]. International Journal of Solids and Structures, 2008, 45:4796-4819.
    [21] ZHOU Z L, ZHAO Y, JIANG Y H, ZOU Y, CAI X, LI D Y. Dynamic behavior of rock during its post failure stage in SHPB tests[J].Transactions of Nonferrous Metals Society of China, 2017, 27:184-196.
    [22] XIA M. Thermo-mechanical coupled particle model for rock[J].Transactions of Nonferrous Metals Society of China, 2015, 25:2367-2379.
    [23] YIN T, ZHANG S, LI X, BAI L. A numerical estimate method of dynamic fracture initiation toughness of rock under high temperature[J]. Engineering Fracture Mechanics, 2018, 204:87-102.
    [24] ULUSAY R. The ISRM suggested methods for rock characterization,testing and monitoring:2007-2014[M]. Switzerland:Springer International Publishing, 2015.
    [25] FAKHIMI A. Application of slightly overlapped circular particles assembly in numerical simulation of rocks with high friction angles[J]. Engineering Geology, 2004, 74:129-138.
    [26] CHO N, MARTIN C D, SEGO D C. A clumped particle model for rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44:997-1010.
    [27] ITASCA C G. Users'manual for particle flow code in 2 dimensions(PFC2D):Version 3.1[M]. Minneapolis:Itasca, 2002.
    [28] BOBET A, EINSTEIN H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35:863-888.
    [29] SAGONG M, BOBET A. Coalescence of multiple flaws in a rock-model material in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39:229-241.
    [30] WONG L N Y, EINSTEIN H H. Crack coalescence in molded gypsum and carrara marble:Part 1. Macroscopic observations and interpretation[J]. Rock Mechanics and Rock Engineering, 2009, 42:475-511.
    [31] HAN L, HE Y, ZHANG H. Study of rock splitting failure based on Griffith strength theory[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 83:116-121.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.