Nanoscale resetting of the Th/Pb system in an isotopically-closed monazite grain: A combined atom probe and transmission electron microscopy study
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Nanoscale resetting of the Th/Pb system in an isotopically-closed monazite grain: A combined atom probe and transmission electron microscopy study
  • 作者:A.-M.Seydoux-Guillaume ; D.Fougerouse ; A.T.Laurent ; E.Gardés ; S.M.Reddy ; D.W.Saxey
  • 英文作者:A.-M. Seydoux-Guillaume;D. Fougerouse;A.T. Laurent;E. Gardés;S.M. Reddy;D.W. Saxey;Univ Lyon, UJM-Saint-Etienne, CNRS IRD;CNRS, Université Clermont Auvergne;School of Earth and Planetary Sciences, Curtin University;Geoscience Atom Probe, Advanced Resource Characterisation Facility, John de Laeter Centre, Curtin University;Centre de recherche sur les Ions, les Matériaux et la Photonique (CIMAP);Department of Physics and Astronomy, Curtin University;
  • 英文关键词:Monazite;;Nanoscale resetting;;Nano-clusters;;APM;;TEM;;UHT metamorphism
  • 中文刊名:Geoscience Frontiers
  • 英文刊名:地学前缘(英文版)
  • 机构:Univ Lyon, UJM-Saint-Etienne, CNRS IRD;CNRS, Université Clermont Auvergne;School of Earth and Planetary Sciences, Curtin University;Geoscience Atom Probe, Advanced Resource Characterisation Facility, John de Laeter Centre, Curtin University;Centre de recherche sur les Ions, les Matériaux et la Photonique (CIMAP);Department of Physics and Astronomy, Curtin University;
  • 出版日期:2019-01-15
  • 出版单位:Geoscience Frontiers
  • 年:2019
  • 期:01
  • 基金:Both UJM and CNRS (INSU TelluS-SYSTER) are thanked for financial support for AMSG and ATL. The Australian Resource Characterisation Facility (ARCF), under the auspices of the National Resource Sciences Precinct (NRSP) - a collaboration between CSIRO, Curtin University and The University of Western Australia e is supported by the Science and Industry Endowment Fund (SIEF RI13-01)
  • 语种:英文;
  • 页:69-80
  • 页数:12
  • CN:11-5920/P
  • ISSN:1674-9871
  • 分类号:P575
摘要
Understanding the mechanisms of parent-daughter isotopic mobility at the nanoscale is key to rigorous interpretation of Ue The Pb data and associated dating. Until now, all nanoscale geochronological studies on geological samples have relied on either Transmission Electron Microscope(TEM) or Atom Probe Microscopy(APM) characterizations alone, thus suffering from the respective weaknesses of each technique. Here we focus on monazite crystals from a ~1 Ga, ultrahigh temperature granulite from Rogaland(Norway). This sample has recorded concordant UeP b dates(measured by LA-ICP-MS) that range over 100 My, with the three domains yielding distinct isotopic Ue Pb ages of 1034 ± 6 Ma(D1; Srich core), 1005 ± 7 Ma(D2), and 935 ± 7 Ma(D3), respectively. Combined APM and TEM characterization of these monazite crystals reveal phase separation that led to the isolation of two different radiogenic Pb(Pb*) reservoirs at the nanoscale. The S-rich core of these monazite crystals contains Cae Srich clusters, 5 -10 nm in size, homogenously distributed within the monazite matrix with a mean interparticle distance of 40 -60 nm. The clusters acted as a sink for radiogenic Pb(Pb*) produced in the monazite matrix, which was reset at the nanoscale via Pb diffusion while the grain remained closed at the micro-scale. Compared to the concordant ages given by conventional micro-scale dating of the grain,the apparent nano-scale age of the monazite matrix in between clusters is about 100 Myr younger, which compares remarkably well to the duration of the metamorphic event. This study highlights the capabilities of combined APM-TEM nano-structural and nano-isotopic characterizations in dating and timing of geological events, allowing the detection of processes untraceable with conventional dating methods.
        Understanding the mechanisms of parent-daughter isotopic mobility at the nanoscale is key to rigorous interpretation of Ue The Pb data and associated dating. Until now, all nanoscale geochronological studies on geological samples have relied on either Transmission Electron Microscope(TEM) or Atom Probe Microscopy(APM) characterizations alone, thus suffering from the respective weaknesses of each technique. Here we focus on monazite crystals from a ~1 Ga, ultrahigh temperature granulite from Rogaland(Norway). This sample has recorded concordant UeP b dates(measured by LA-ICP-MS) that range over 100 My, with the three domains yielding distinct isotopic Ue Pb ages of 1034 ± 6 Ma(D1; Srich core), 1005 ± 7 Ma(D2), and 935 ± 7 Ma(D3), respectively. Combined APM and TEM characterization of these monazite crystals reveal phase separation that led to the isolation of two different radiogenic Pb(Pb*) reservoirs at the nanoscale. The S-rich core of these monazite crystals contains Cae Srich clusters, 5 -10 nm in size, homogenously distributed within the monazite matrix with a mean interparticle distance of 40 -60 nm. The clusters acted as a sink for radiogenic Pb(Pb*) produced in the monazite matrix, which was reset at the nanoscale via Pb diffusion while the grain remained closed at the micro-scale. Compared to the concordant ages given by conventional micro-scale dating of the grain,the apparent nano-scale age of the monazite matrix in between clusters is about 100 Myr younger, which compares remarkably well to the duration of the metamorphic event. This study highlights the capabilities of combined APM-TEM nano-structural and nano-isotopic characterizations in dating and timing of geological events, allowing the detection of processes untraceable with conventional dating methods.
引文
Ashwal, L.D., Tucker, R.D., Zinner, E.K., 1999. Slow cooling of deep crustal granulites and Pb-loss in zircon. Geochimica et Cosmochimica Acta 63, 2839-2851.
    Bellucci, J.J., Nemchin, A.A., Whitehouse, M.J., Kielman, R.B., Snape, J.F., Pidgeon, R.T.,2018. Geochronology of Hadean zircon grains from the Jack Hills, Western Australia constrained by quantitative scanning ion imaging. Chemical Geology476, 469-480.
    Bingen, B., Boven, A., Punzalan, L., Wijbrans, J.R., Demaiffe, D., 1998. Hornblende40Ar/39Ar geochronology across terrane boundaries in the Sveconorwegian Province of S. Norway. Precambrian Research 90,159-185.
    Bingen, B., Nordgulen, O., Viola, G., 2008. A four-phase model for the Sveconorwegian orogeny, SW Scandinavia. Norsk Geologisk Tidsskrift 88, 43.
    Bingen, B., Stein, H., 2003. Molybdenite Re-Os dating of biotite dehydration melting in the Rogaland high-temperature granulites, S Norway. Earth and Planetary Science Letters 208,181-195. https://doi.org/10.1016/S0012-821X(03)00036-0.
    Bingen, B., Van Breemen, 0., 1998. U-Pb monazite ages in amphibolite-to granulitefacies orthogneiss reflect hydrous mineral breakdown reactions:Sveconorwegian Province of SW Norway. Contributions to Mineralogy and Petrology 132,336-353.
    Black, L.P., Fitzgerald, J.D., Harley, S.L., 1984. Pb isotopic composition, colour, and microstructure of monazites from a polymetamorphic rock in Antarctica.Contributions to Mineralogy and Petrology 85,141-148.
    Blereau, E., Johnson, T.E., Clark, C., Taylor,R.J.M., Kinny, P.D., Hand, M., 2017. Reappraising the P-T evolution of the rogaland-vest agder sector, southwestern Norway. Geoscience Frontiers 8,1-14.
    Blum, T.B., Darling, J.R., Kelly, T.F., Larson, D.J., Moser, D.E., Perez-Huerta, A.,Prosa, T.J., Reddy, S.M., Reinhard, D.A., Saxey, D.W., 2018. Best practices for reporting atom probe analysis of geological materials. Microstructural Geochronology:Planetary Records Down to Atom Scale 369-373.
    Bonef, B., Gerard, L., Rouviere, J.L., Grenier, A., Jouneau, P.H., Bellet-Amalric, E.,Mariette, H., Andre, R., Bougerol, C., 2015. Atomic arrangement at ZnTe/CdSe interfaces determined by high resolution scanning transmission electron microscopy and atom probe tomography. Applied Physics Letters 106, 051904.
    Cherniak, D., Watson, E.B., Grove, M., Harrison, T.M., 2004. Pb diffusion in monazite:a combined RBS/SIMS study. Geochimica et Cosmochimica Acta 68, 829-840.
    Cherniak, D.J., Watson, E.B., 2003. In:Hanchar, J.M., Hoskin, P.W.O.(Eds.), Diffusion in Zircon. Zircon. Mineralogical Soc Amer, Chantilly, pp. 113-143.
    Clavier, N., Podor, R., Dacheux, N., 2011. Crystal chemistry of the monazite structure.Journal of the European Ceramic Society 31, 941-976.
    Corfu, F., 2013. A century of U-Pb geochronology:the long quest towards concordance. The Geological Society of America Bulletin 125, 33-47.
    Deschanels, X., Seydoux-Guillaume, A.M., Magnin, V., Mesbah, A., Tribet, M.,Moloney, M., Serruys, Y., Peuget, S., 2014. Swelling induced by alpha decay in monazite and zirconolite ceramics:a XRD and TEM comparative study. Journal of Nuclear Materials 448,184-194.
    Druppel, K., Elsasser, L., Brandt, S., Gerdes, A., 2013. Sveconorwegian mid-crustal ultrahigh-temperature metamorphism in Rogaland, Norway:U-Pb LA-ICP-MS geochronology and pseudosections of sapphirine granulites and associated paragneisses. Journal of Petrology 54(2), 305-350.
    Fougerouse, D., Reddy, S.M., Saxey, D.W., Erickson, T., Kirkland, C.L., Rickard, W.D.A.,Seydoux-Guillaume, A.-M., Clark, C., Buick, I.S., 2018. Nanoscale distribution of Pb in monazite revealed by atom probe microscopy. Chemical Geology 479,251-258. https://doi.org/10.1016/j.chemgeo.2018.01.020.
    Fougerouse, D., Reddy, S.M., Saxey, D.W., Rickard, W.D., Van Riessen, A.,Micklethwaite, S., 2016. Nanoscale gold clusters in arsenopyrite controlled by growth rate not concentration:evidence from atom probe microscopy. American Mineralogist 101,1916-1919.
    Gardes, E., Montel, J.-M., 2009. Opening and resetting temperatures in heating geochronological systems. Contributions to Mineralogy and Petrology 158,185-195.
    Gardes, E., Jaoul, O., Montel, J.-M., Seydoux-Guillaume, A.-M., Wirth, R., 2006. Pb diffusion in monazite:an experimental study of Pb2+Th4+(?)2Nd3+interdiffusion. Geochimica et Cosmochimica Acta 70(9), 2325-2336.
    Gardes, E., Montel,J.-M., Seydoux-Guillaume, A.-M., Wirth, R., 2007. Pb diffusion in monazite:new constraints from the experimental study of Pb2+(?)Ca2+interdiffusion. Geochimica et Cosmochimica Acta 71(16), 4036-4043.
    Gault, B., Moody, M.P., Cairney, J.M., Ringer, S.P., 2012. Atom Probe Microscopy.Springer Science&Business Media.
    Gault, B., Saxey, D.W., Ashton, M.W., Sinnott, S.B., Chiaramonti, A.N., Moody, M.P.,Schreiber, D.K., 2016. Behavior of molecules and molecular ions near a field emitter. New Journal of Physics 18(3), 033031.
    Geisler, T., Rashwan, A.A., Rahn,M.K.W., Poller, U., Zwingmann, H., Pidgeon, R.T.,Schleicher, H., Tomaschek, F., 2003. Low temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineralogical Magazine 67, 485-508.
    Grand'Homme, A., Janots,E.,Seydoux-Guillaume, A.M., Guillaume, D., Magnin, V.,Hovelmann, J., Hoschen, C., Boiron, M.C., 2018. Mass transport and fractionation during monazite alteration by anisotropic replacement. Chemical Geology 484,51-68. https://doi.org/10.1016/j.chemgeo.2017.10.008.
    Grand'Homme, A., Janots, E., Seydoux-Guillaume, A.-M., Guillaume, D., Bosse, V.,Magnin, V., 2016. Partial resetting of the U-Th-Pb systems in experimentally altered monazite:nanoscale evidence of incomplete replacement. Geology 44(6), 431-434.
    Grenier, A., Duguay, S., Barnes, J.P., Serra, R., Haberfehlner, G., Cooper, D., Bertin, F.,Barraud, S., Audoit, G., Arnoldi, L., Cadel, E., Chabli, A., Vurpillot, F., 2014. 3D analysis of advanced nano-devices using electron and atom probe tomography.Ultramicroscopy 136,185-192.
    Grenier, A., Duguay, S., Barnes, J.P., Serra, R., Rolland, N., Audoit, G., Morin, P.,Gouraud, P., Cooper, D., Blavette, D., Vurpillot, F., 2015. Three dimensional imaging and analysis of a single nano-device at the ultimate scale using correlative microscopy techniques. Applied Physics Letters 106, 213102.
    Hawkins, D., Bowring, S.A., 1997. U-Pb systematics of monazite and xenotime:case studies from the Paleoproterozoic of the Grand Canyon, Arizona. Contributions to Mineralogy and Petrology 127, 87.
    Helmy, H.M., Ballhaus, C., Fonseca, R.O.C., Wirth, R., Nagel, T., Tredoux, M., 2013.Noble metal nanoclusters and nanoparticles precede mineral formation in magmatic sulphide melts. Nature Communications 4, 2405. https://doi.org/10.1038/ncomms3405.
    Hellman, O.C., Vandenbroucke, J.A., Rusing, J., Isheim, D., Seidman, D.N., 2000.Analysis of three-dimensional atom-probe data by the proximity histogram.Microscopy and Microanalysis 6(05), 437-444.
    Kelly, T.F., Larson, D.J., 2012. Atom probe tomography 2012. Annual Review of Materials Research 42,1-31.
    Kirkland, C., Erickson, T., Johnson, T., Danisik, M., Evans, N., Bourdet,J., McDonald, B.,2016. Discriminating prolonged, episodic or disturbed monazite age spectra:an example from the Kalak Nappe Complex, Arctic Norway. Chemical Geology 424,96-110.
    Kusiak, M.A., Wilde, S.A., Wirth, R., Whitehouse, M.J., Dunkley, D.J., Lyon, I.,Reddy, S.M., Berry, A., deJonge,M., 2018. Detecting micro-and nanoscale variations in element mobility in high-grade metamorphic rocks:planetary records down to atom scale. In:Moser, D.E., Corfu, F., Darling, J.R., Reddy, S.M., Tait, K.T.(Eds.), Microstructural Geochronology:Planetary Records Down to Atom Scale,vol. 232. AGU/Wiley Publishing, pp. 279-291.
    Kusiak, M.A., Dunkley,D.J.,Wirth,R., Whitehouse,M.J.,Wilde, SA.,Marquardt, K.,2015. Metallic lead nanospheres discovered in ancient zircons. Proceedings of the National Academy of Sciences of the United States of America 112, 4958-4963.
    Kusiak, M.A., Whitehouse, M.J., Wilde, S.A., Nemchin, A.A., Clark, C., 2013. Mobilization of radiogenic Pb in zircon revealed by ion imaging:implications for early Earth geochronology. Geology 41, 291-294.
    Langelier, B., Wang, X., Grandfield, K., 2017. Atomic scale chemical tomography of human bone. Scientific Reports 7, 39958. https://doi.org/10.1038/srep39958.
    Laurent, A.T., Duchene, S., Bingen, B., Bosse, V., Seydoux-Guillaume, A., 2018a. Two successive phases of ultrahigh temperature metamorphism in Rogaland, S.Norway:evidence from Y-in-monazite thermometry. Journal of Metamorphic Geology. https://doi.org/10.1111/jmg.12425.
    Laurent, A.T., Bingen, B., Duchene, S., Whitehouse, M.J., Seydoux-Guillaume, A.-M.,Bosse, V., 2018b. Decoding a protracted zircon geochronological record in ultrahigh temperature granulite, and persistence of partial melting in the crust,Rogaland, Norway. Contribution to Mineralogy and Petrology 173, 29. https://doi.org/10.1007/s00410-018-1455-4.
    Laurent, A.T., Seydoux-Guillaume, A.-M., Duchene, S., Bingen, B., Bosse, V., Datas, L.,2016. Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts. Contributions to Mineralogy and Petrology 171(11), 94.
    Lefebvre-Ulrickson, W., 2016. In:Lefebvre-Ulrikson, W., Vurpillot, F., Sauvage, X.(Eds.),Chapter in Book"Atom Probe Tomography:Put Theory into Practice".Academic Press, Elsevier, pp. 319-352. ISBN-10:0128046473.
    Moller, A., O'brien, P.J., Kennedy, A., Kroner, A., 2002. Polyphase zircon in ultrahightemperature granulites(Rogaland,SW Norway):constraints for Pb diffusion in zircon. Journal of Metamorphic Geology 20, 727-740.
    Montel,J.-M., Devidal,J.-L., Avignant, D., 2002. X-ray diffraction study of brabantitemonazite solid solution. Chemical Geology 191, 89-104.
    Montel, J.-M., Foret, S., Veschambre, M., Nicollet, C., Provost, A., 1996. Electron microprobe dating of monazite. Chemical Geology 131, 37-53.
    Ni, Y., Hughes, J.M., Mariano, A.N., 1995. Crystal chemistry of the monazite and xenotime structures. American Mineralogist 80, 21-26.
    Peterman, E.M., Reddy, S.M., Saxey, D.W., Snoeyenbos, D.R., Rickard, W.D.,Fougerouse, D., Kylander-Clark, A.R., 2016. Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops.Science Advances 2(9), e1601318.
    Piazolo, S., La Fontaine, A., Trimby, P., Harley, S., Yang, L., Armstrong, R., Cairney, J.M.,2016. Deformation induced trace element redistribution in zircon revealed using atom probe tomography. Nature Communications 7,10490.
    Ramasse, Q.M., 2017. Twenty years after:how"Aberration correction in the STEM"truly placed a"A synchrotron in a Microscope".Ultramicroscopy 180, 41-51.
    Reddy, S.M., van Riessen, A., Saxey, D.W., Johnson, T.E., Rickard, W.D.A.,Fougerouse, D., Olson, D., 2016. Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy. Geochimica et Cosmochimica Acta 195,158-170. https://doi.org/10.1016/j.gca.2016.09.019.
    Reiner, P.W., Ehlers, T.A.(Eds.), 2005. Low-temperature Thermochronology:Techniques, Interpretations, and Applications. Reviews in Mineralogy&Geochemistry, vol. 58. Mineralogical Society of America, p. 622.
    Rout, S.S., Heck, P.R., Isheim, D., Stephan, T., Zaluzec, N.J., Miller, D.J., Davis, A.M.,Seidman, D.N., 2017. Atom-probe tomography and transmission electron microscopy of the kamacite-taenite interface in the fast-cooled Bristol IVA iron meteorite. Meteoritics and planetary science 52, 2707-2729.
    Saxey, D., Reddy, S.M., Fougerouse, D., Rickard, W.D., 2018. The optimization of zircon analyses by laser-assisted atom probe microscopy:Insights from the91500 zircon standard. Microstructural Geochronology:Planetary Records Down to Atom Scale 293-313.
    Seydoux-Guillaume, A.-M., Bingen, B., Paquette, J.L., Bosse, V., 2015. Nanoscale evidence for uranium mobility in zircon and the discordance of U-Pb chronometers. Earth and Planetary Science Letters 409, 43-48.
    Seydoux-Guillaume, A.-M., Bingen, B., Bosse, V., Janots, E., Laurent, A.T., 2018a.Transmission Electron Microscope imaging sharpens geochronological interpretation of zircon and monazite. In:Moser, D.E., Corfu, F., Darling, J.R.,Reddy, S.M., Tait, K.T.(Eds.), Microstructural Geochronology:Planetary Records Down to Atom Scale, vol. 232. AGU/Wiley Publishing, pp. 261-275.
    Seydoux-Guillaume,A.-M., Deschanels, X., Baumier, C., Neumeier, S., Weber, W.J.,Peuget, S., 2018b. Why natural monazite never becomes amorphous:experimental evidence for alpha self-healing. American Mineralogist 103, 824-827.https://doi.org/10.2138/am-2018-6447.
    Seydoux-Guillaume, A.-M., Goncalves, P., Wirth, R., Deutsch, A., 2003. Transmission electron microscope study of polyphase and discordant monazites:site-specific specimen preparation using the focused ion beam technique. Geology 31(11),973-976.
    Seydoux-Guillaume, A.-M., Montel, J.-M., Bingen, B., Bosse, V., De Parseval, P.,Paquette, J.-L., Janots, E., Wirth, R., 2012. Low-temperature alteration of monazite:fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. Chemical Geology330, 140-158.
    Seydoux-Guillaume, A.-M., Wirth, R., Deutsch, A., Scharer, U., 2004. Microstructure of 24-1928 Ma concordant monazites:Implications for geochronology and nuclear waste deposits. Geochimica et Cosmochimica Acta 68, 2517-2527.
    Seydoux-Guillaume,A.-M., Wirth, R., Nasdala, L., Gottschalk, M., Montel, J.M.,Heinrich, W., 2002. An XRD, TEM and Raman study of experimentally annealed natural monazite. Physics and Chemistry of Minerals 29, 240-253.
    Slagstad, T., Roberts, N.M.W., Marker, M., Rohr, T.S., Schiellerup, H., 2013. A noncollisional, accretionary Sveconorwegian orogen. Terra Nova 25, 30-37. https://doi.org/10.1111/ter.12001.
    Smye, A.J., Stockli, D.F., 2014. Rutile U-Pb and depth profiling:a continuous record of lithospheric thermal evolution. Earth and Planetary Science Letters 408,171-182.
    Stacey, J.t., Kramers,J., 1975. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters 26(2), 207-221.
    Thompson, K., Lawrence, D., Larson, D., Olson, J., Kelly, T., Gorman, B., 2007. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2), 131-139.
    Valley, J.W., Cavosie, A.J., Ushikubo, T., Reinhard, D.A., Lawrence, D.F., Larson, D.J.,Clifton, P.H., Kelly, T.F., Wilde, S.A., Moser, D.E., 2014. Hadean age for a postmagma-ocean zircon confirmed by atom-probe tomography. Nature Geoscience 7(3), 219-223.
    Valley, J.W., Reinhard, DA., Cavosie, A.J., Ushikubo, T., Lawrence, D.F., Larson, D.J.,Kelly, T.F., Snoeyenbos, D.R., Strickland, A., 2015. Presidential Address. Nano-and micro-geochronology in Hadean and Archean zircons by atom-probe tomography and SIMS:new tools for old minerals. American Mineralogist 100(7), 1355-1377.
    Villa-Vialaneix, N., Montel, J.-M., Seydoux-Guillaume, A.-M., 2013. NiLeDAM:Monazite Datation for the NiLeDAM Team. R Package Version 0.1. http://niledam.r-forge.r-project.org.
    Vurpillot, F., Bostel, A., Blavette, D., 2000. Trajectory overlaps and local magnification in three-dimensional atom probe. Applied Physics Letters 76(21),3127-3129.
    Weber, J., Barthel, J., Brandt, F., Klinkenberg, M., Breuer, U., Kruth, M., Bosbach, D.,2016. Nano-structural features of barite crystals observed by electron microscopy and atom probe tomography. Chemical Geology 424, 51-59.
    Wetherill, G.W., 1956. Discordant uranium-lead ages 1. Transactions-American Geophysical Union 37, 320-326.
    White, L.F., Darling, J., Moser, D., Reinhard, D., Prosa, T., Bullen, D., Olsen, D.,Larson, D., Lawrence, D., Martin, I., 2017. Atomic-scale age resolution of planetary events. Nature Communications 8,1-6.
    Whitehouse, M.J., Kumar, G.R.R., Rimsa, A., 2014. Behaviour of radiogenic Pb in zircon during ultrahigh-temperature metamorphism:an ion imaging and ion tomography case study from the Kerala Khondalite Belt, southern India. Contributions to Mineralogy and Petrology 168,1-18.
    Whitehouse, M.J., Kusiak, M.A., Wirth, R., Ravindra Kumar, G.R., 2017. Metallic Pb nanospheres in ultra-high temperature metamorphosed zircon from southern India. Mineralogy and Petrology 111, 467-474.
NGLC 2004-2010.National Geological Library of China All Rights Reserved.
Add:29 Xueyuan Rd,Haidian District,Beijing,PRC. Mail Add: 8324 mailbox 100083
For exchange or info please contact us via email.